Unconventional Mgnon Blockade Under the Sagenac Fizeau Shift in an Opto-Magnonic System: Parametric Amplification

Main Article Content

Anjan Samanta
Pinku Jana
Paresh Chandra Jana

Abstract

We propose to achieve and enhance the unconventional magnon blockade effect, based on a quantum destructive interference mechanism in an optomechanicalmagnetic system composed of a rotating cavity and a yttrium irongarnet (YIG) sphere. We introduce a degenerate parametric amplifier and derive the optimal parametric gain and phase to achieve magnon blockade analytically. By tuning the system parameters (weak coupling) and the driving detuning of the cavity and magnon modes, we achieve the smallest second-order magnon correlation function. The optomechanical cavity couples to the YIG sphere by magnetic dipole interaction. We achieve unconventional magnon blockade effects when the cavity is driven from a clockwise or counterclockwise direction. We introduce a new feature that combines the impact of destructive interference and energy-level anharmonicity to achieve magnon blockade. The equal-time second-order magnon correlation avoids time delay and rapid oscillation. In the input end of the system, two photons drive, and complete quantum destructive interference. This study opens a new window for physical applications, including the generation of single magnon sources, Quantum sensing, and Quantum simulation. Experimentally, we can control quantum noise and amplify the signal using parametric amplification.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

[1]
Anjan Samanta, Pinku Jana, and Paresh Chandra Jana , Trans., “Unconventional Mgnon Blockade Under the Sagenac Fizeau Shift in an Opto-Magnonic System: Parametric Amplification”, IJIES, vol. 12, no. 6, pp. 24–34, Jun. 2025, doi: 10.35940/ijies.G1107.12060625.
Share |

References

Lasher. G. J. (1964). Analysis of a proposed bistable injection laser. Solid state Electronics 7, 707.

DOI: https://doi.org/10.1049/ip-j.1986.0047

Dorsel, A. et al. (1983). Optical bistability and mirror confinement induced by radiation pressure. Phys. Rev. Lett. 51, 1550.

DOI: https://doi.org/10.1103/PhysRevLett.51.1550

Yuan. G. et al. (2008). Theoretical and experimental studies on bistability in semiconductor ring lasers with two optical injections. IEEE J. S. T. Quant. Ele. 14, 3.

DOI: https://doi.org/10.1109/JSTQE.2008.918058

Jiang. C. et al. (2013). Controllable optical bistability based on photons and phonons in a two-mode optomechanical system. Phys. Rev.. A. 88, 055801. DOI: http://doi.org//10.1088/1612-202X/acf046

Li. S. et al. (2017). Optical bistability via an external control field in an all-fibre ring cavity. Sci. Rep. 7, 8992.

DOI: https://doi.org/10.1016/j.optlastec.2017.07.052

Yu. C. Sun. L. Zhang. H. and Chen. F. (2018). Controllable optical bistability in a double quantum dot molecule. IET Optoelectronics 12, 215. DOI: https://doi.org/10.1049/iet-opt.2018.0033

Minh. P. L. T. et al. (2018). Optical bistability in a controllable giant self-Kerr nonlinear gaseous medium, electromagnetically induced transparency, and Doppler broadening. Int. j. opt., article id 7260960. DOI: http://dx.doi.org/10.1155/2018/7260960

Jiang. C. Bian. X. Cui. Y. and Chen. G. (2016). Optical bistability and dynamics in an optomechanical system with a two-level atom. J. Opt. Am. B 33, 10. DOI: https://doi.org/10.1364/JOSAB.33.002099

Li. J. Yu. R. Ding. C. and Wu. Y. (2014). Optical bistability and four-wave mixing with a single nitrogen-vacancy centre coupled to a photonic crystal nanocavity in the weak-coupling regime. Opt. Express 22, 15024. DOI: https://doi.org/10.1364/OE.22.015024

Jiang. L et al. (2017). Optical bistability and four-wave mixing in a hybrid optomechanical system. Phys. Lett. A. 381, 3289.

DOI: https://doi.org/10.1016/j.physleta.2017.08.045

Chen. H. J. et al. (2019). Controllable optical bistability and four-wave mixing in a photonic molecule optomechanics. Nanoscale research letters 14, 73. DOI: https://doi.org/10.1186/s11671-019-2893-2

Baas, A. Karr. J. P. Eleuch. H. and Giacobino. E. (2004). Optical bistability in semiconductor microcavities, Phys. Rev.. A 69, 023809. DOI: https://doi.org/10.1103/PhysRevA.69.023809

Kyrlienko. O. Liew. T. C. H. and Shelykh. I. A. (2013). Optomechanics with cavity polaritons: Dissipative coupling and unconventional bistability. arxiv: 1308.2131v1 [cond-mat.mess-hall]. DOI: https://doi.org/10.1103/PhysRevLett.112.076402

Zhang. G. Q. Wang. Y. P. You. J. Q. (2019). Theory of the magnon Kerr effect in cavity magnonics. arxiv: 1903.03754v1 [quant-ph]. DOI: https://doi.org/10.1103/PhysRevB.94.224410

Wang. Y. P. et al. (2018). Bistability of cavity magnon polariton. arxiv: 1707.06509v2[quant-ph]

DOI: https://doi.org/10.1103/PhysRevLett.120.057202

Kong. C. Xiong. H. and Wu. Y. (2019). Magnon-induced nonreciprocity based on the Magnon Kerr effect. Phys. Rev.. App. 12, 034001. DOI: https://doi.org/10.1103/PhysRevApplied.12.034001

Elliott. M. and Ginossar. E. (2016). Applications of the Fokker-Planck equation in circuit quantum electrodynamics. arxiv: 1606.08508v1 [quant-ph]. DOI: https://doi.org/10.1103/PhysRevA.94.043840

Mukherjee. K. and Jana. P. C. (2019). Optical bistability in a coupled cavity system. Proceedings of the international conference on optics and electro-optics (ICOL-2019). Springer Proceedings in Physics 258, 247. DOI: https://doi.org/10.1007/978-981-15-9259-1_56

Gippius. N. A. et al. (2004). Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering. Eur. Phys. Lett. 67, 997.

DOI: http://doi.org//10.1209/epl/i2004-10133-6

Larionova. Y. Stolz. W. and Weiss. C. O. (2008). Optical bistability and spatial resonator solitons based on exciton-polariton nonlinearity. Opt. Lett. 33, 32.1. DOI: https://doi.org/10.1364/OL.33.000321

Y. Zhang et al, The multistability in the coupled semiconductor microcavities. Int. J. Quant. Inf. 13, 1550053. (2015).

DOI: https://doi.org/10.1142/S0219749915500537

Jing. H. et al. (2018). Nanoparticle sensing with a spinning resonator. Optica 5, 1424. DOI: https://doi.org/10.1364/OPTICA.5.001424

Mirza. I. M. Ge. W. and Jing. H. (2019). Optical nonreciprocity and slow light in coupled spinning optomechanical resonators. Opt. Exp. 27, 25515. DOI: https://doi.org/10.1364/oe.27.025515

Gibbs. H. (1985). Optical Bistability: Controlling light with light. (Academic, New York,).

DOI: https://doi.org/10.1007/978-3-540-38950-7_46

Peyghambarian. N. and Gibbs. H. M. (1985). Optical bistability for optical signal processing and computing. Optical Engineering 24, 68. DOI: https://doi.org/10.1117/12.7973427

Xu. L. and Wang. B.C. (2002). Optical spectral bistability in a semiconductor fibre ring laser through gain saturation in an SOA. IEEE Photon. Tech. Lett. 14, 149.

DOI: https://doi.org/10.1109/68.980477

Mao. Q. and Lit. J.W. (2003). L-band fibre laser with wide tuning range based on dual-wavelength optical bistability in linear overlapping grating cavities. IEEE J. Quant. Electron 39, 1252.

DOI: https://doi.org/10.1002/mop.11198

Faraon, A. et al. (2011). Integrated quantum optical networks based on quantum dots and photonic crystals. New J. Phys. 13, 055025.

DOI: http://doi.org//10.1088/1367-2630/13/5/055025

Sete. E.A. and Eleuch. H. (2012). Controllable nonlinear effects in an optomechanical resonator containing a quantum well. Phys. Rev.. A. 85, 043824. DOI: https://doi.org/10.1103/PhysRevA.85.043824

Gao. M. et al. (2015). Self-sustained oscillation and dynamical multistability of optomechanical systems in the extremely-large-amplitude regime. Phys. Rev.. A. 91, 013833.

DOI: https://doi.org/10.1103/PhysRevA.91.013833

Yan. D. et al. (2015). Duality and bistability in an optomechanical cavity coupled to a Rydberg superatom. Phys. Rev.. A. 91, 023813. DOI: https://doi.org/10.1103/PhysRevA.91.023813

Mukherjee. K. and Jana. P. C. (2019). Controlled optical bistability in parity-time symmetry micro-cavities: Possibility of all-optical switching. Physica E: Low-dimensional systems and nanostructures 117, 113780. DOI: https://doi.org/10.1016/j.physe.2019.113780

Irvine. W. T. M. et al. (2006). Strong coupling between single photons in semiconductor microcavities. Phys. Rev.. Lett. 96, 057405.

DOI: https://doi.org/10.1103/PhysRevLett.96.057405

Yang. Z. et al. (2007). Enhanced second-harmonic generation in AlGaAs microring resonators. Opt. Lett. 32, 826.

DOI: https://doi.org/10.1364/OL.32.000826

Andreani. L. C. Panzarini. G. and Gerard. J. M. (1999). Strong-coupling regime for quantum boxes in pillar microcavities: Theory. Phys. Rev.. B 60, 13276. DOI: https://doi.org/10.1103/PhysRevB.60.13276

Skauli. T. et al. (2002). Measurement of the nonlinear coefficient orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation. Opt. Lett. 27, 628. DOI: https://doi.org/10.1364/OL.27.000628

Bergfeld. S. Daum. W. (2003). Second-harmonic generation in GaAs: Experiment versus theoretical predictions of X_xyz^((2)). Phys. Rev. Lett. 90, 036801. DOI: http://doi.org//10.1103/PhysRevLett.90.036801

Chen. J. Levine. Z. H. and Wilkins. J. W. (1995). Calculated second-harmonic susceptibilities of BN, AlN, and GaN. Appl. Phys. Lett. 66, 9. DOI: https://doi.org/10.1063/1.113835

Sanford. N. A. et al. (2005). Measurement of second-order susceptibilities of GaN and AlGaN. J. App. Phys. 97, 053512. https://doi.org/10.1063/1.1852695

Roland. I. et al. (2016). Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks. Sci. Rep. 6, 34191.

DOI: https://doi.org/10.1038/srep34191

May. S. et al. (2019). Second-harmonic generation in AlGaAs-on-insulator waveguides. Opt. Lett. 44, 1339

DOI: https://doi.org/10.1364/OL.44.001339

GMalykin. B. (2000). The Sagnac effect: correct and incorrect explanations. Phys. Usp. 43, 1229.

DOI: https://doi.org/10.1070/pu2000v043n12ABEH000830

Franke, A. S. Gibson, G. Boyd, R. W. Padgett. M. J. (2011). Rotary photon drag enhanced by a slow-light medium. Science 333, 65.

DOI: https://doi.org/10.1126/science.1203984

Maayani. S. et al. (2018). Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569.

DOI: https://doi.org/10.1038/s41586-018-0245-5

Arita. Y. Mazilu. M. and Dholakia. K. (2013). Laser-induced rotation and cooling of a trapped microgyroscope in a vacuum. Nat. Comm. 4, 2374. DOI: https://doi.org/10.1038/ncomms3374

Monteiro. F. Ghosh. S. Assendelft. E. C. V. and Moore. D. C. (2018). Optical rotation of levitated spheres in high vacuum. Phys. Rev. A. 97, 051802(R). DOI: http://dx.doi.org/10.1103/PhysRevA.97.051802

Ahn. J. et al. (2018). Optically levitated nano-dumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett. 121, 033603. DOI: https://doi.org/10.1103/PhysRevLett.121.033603

Reimann. R. et al. (2018). GHz rotation of an optically trapped nanoparticle in a vacuum. Phys. Rev. Lett. 121, 033602.

DOI: https://doi.org/10.1103/PhysRevLett.121.033602

Wang. K. Wu. Q. Yu. Y. F. Zhang. Z. M. (2019). Nonreciprocal photon blockade in a two-mode cavity with a second-order nonlinearity. Phys. Rev. A. 100, 053832. DOI: https://doi.org/10.1103/PhysRevA.100.053832

Most read articles by the same author(s)

1 2 3 4 5 > >>