Unconventional Mgnon Blockade Under the Sagenac Fizeau Shift in an Opto-Magnonic System: Parametric Amplification
Main Article Content
Abstract
We propose to achieve and enhance the unconventional magnon blockade effect, based on a quantum destructive interference mechanism in an optomechanicalmagnetic system composed of a rotating cavity and a yttrium irongarnet (YIG) sphere. We introduce a degenerate parametric amplifier and derive the optimal parametric gain and phase to achieve magnon blockade analytically. By tuning the system parameters (weak coupling) and the driving detuning of the cavity and magnon modes, we achieve the smallest second-order magnon correlation function. The optomechanical cavity couples to the YIG sphere by magnetic dipole interaction. We achieve unconventional magnon blockade effects when the cavity is driven from a clockwise or counterclockwise direction. We introduce a new feature that combines the impact of destructive interference and energy-level anharmonicity to achieve magnon blockade. The equal-time second-order magnon correlation avoids time delay and rapid oscillation. In the input end of the system, two photons drive, and complete quantum destructive interference. This study opens a new window for physical applications, including the generation of single magnon sources, Quantum sensing, and Quantum simulation. Experimentally, we can control quantum noise and amplify the signal using parametric amplification.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Lasher. G. J. (1964). Analysis of a proposed bistable injection laser. Solid state Electronics 7, 707.
DOI: https://doi.org/10.1049/ip-j.1986.0047
Dorsel, A. et al. (1983). Optical bistability and mirror confinement induced by radiation pressure. Phys. Rev. Lett. 51, 1550.
DOI: https://doi.org/10.1103/PhysRevLett.51.1550
Yuan. G. et al. (2008). Theoretical and experimental studies on bistability in semiconductor ring lasers with two optical injections. IEEE J. S. T. Quant. Ele. 14, 3.
DOI: https://doi.org/10.1109/JSTQE.2008.918058
Jiang. C. et al. (2013). Controllable optical bistability based on photons and phonons in a two-mode optomechanical system. Phys. Rev.. A. 88, 055801. DOI: http://doi.org//10.1088/1612-202X/acf046
Li. S. et al. (2017). Optical bistability via an external control field in an all-fibre ring cavity. Sci. Rep. 7, 8992.
DOI: https://doi.org/10.1016/j.optlastec.2017.07.052
Yu. C. Sun. L. Zhang. H. and Chen. F. (2018). Controllable optical bistability in a double quantum dot molecule. IET Optoelectronics 12, 215. DOI: https://doi.org/10.1049/iet-opt.2018.0033
Minh. P. L. T. et al. (2018). Optical bistability in a controllable giant self-Kerr nonlinear gaseous medium, electromagnetically induced transparency, and Doppler broadening. Int. j. opt., article id 7260960. DOI: http://dx.doi.org/10.1155/2018/7260960
Jiang. C. Bian. X. Cui. Y. and Chen. G. (2016). Optical bistability and dynamics in an optomechanical system with a two-level atom. J. Opt. Am. B 33, 10. DOI: https://doi.org/10.1364/JOSAB.33.002099
Li. J. Yu. R. Ding. C. and Wu. Y. (2014). Optical bistability and four-wave mixing with a single nitrogen-vacancy centre coupled to a photonic crystal nanocavity in the weak-coupling regime. Opt. Express 22, 15024. DOI: https://doi.org/10.1364/OE.22.015024
Jiang. L et al. (2017). Optical bistability and four-wave mixing in a hybrid optomechanical system. Phys. Lett. A. 381, 3289.
DOI: https://doi.org/10.1016/j.physleta.2017.08.045
Chen. H. J. et al. (2019). Controllable optical bistability and four-wave mixing in a photonic molecule optomechanics. Nanoscale research letters 14, 73. DOI: https://doi.org/10.1186/s11671-019-2893-2
Baas, A. Karr. J. P. Eleuch. H. and Giacobino. E. (2004). Optical bistability in semiconductor microcavities, Phys. Rev.. A 69, 023809. DOI: https://doi.org/10.1103/PhysRevA.69.023809
Kyrlienko. O. Liew. T. C. H. and Shelykh. I. A. (2013). Optomechanics with cavity polaritons: Dissipative coupling and unconventional bistability. arxiv: 1308.2131v1 [cond-mat.mess-hall]. DOI: https://doi.org/10.1103/PhysRevLett.112.076402
Zhang. G. Q. Wang. Y. P. You. J. Q. (2019). Theory of the magnon Kerr effect in cavity magnonics. arxiv: 1903.03754v1 [quant-ph]. DOI: https://doi.org/10.1103/PhysRevB.94.224410
Wang. Y. P. et al. (2018). Bistability of cavity magnon polariton. arxiv: 1707.06509v2[quant-ph]
DOI: https://doi.org/10.1103/PhysRevLett.120.057202
Kong. C. Xiong. H. and Wu. Y. (2019). Magnon-induced nonreciprocity based on the Magnon Kerr effect. Phys. Rev.. App. 12, 034001. DOI: https://doi.org/10.1103/PhysRevApplied.12.034001
Elliott. M. and Ginossar. E. (2016). Applications of the Fokker-Planck equation in circuit quantum electrodynamics. arxiv: 1606.08508v1 [quant-ph]. DOI: https://doi.org/10.1103/PhysRevA.94.043840
Mukherjee. K. and Jana. P. C. (2019). Optical bistability in a coupled cavity system. Proceedings of the international conference on optics and electro-optics (ICOL-2019). Springer Proceedings in Physics 258, 247. DOI: https://doi.org/10.1007/978-981-15-9259-1_56
Gippius. N. A. et al. (2004). Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering. Eur. Phys. Lett. 67, 997.
DOI: http://doi.org//10.1209/epl/i2004-10133-6
Larionova. Y. Stolz. W. and Weiss. C. O. (2008). Optical bistability and spatial resonator solitons based on exciton-polariton nonlinearity. Opt. Lett. 33, 32.1. DOI: https://doi.org/10.1364/OL.33.000321
Y. Zhang et al, The multistability in the coupled semiconductor microcavities. Int. J. Quant. Inf. 13, 1550053. (2015).
DOI: https://doi.org/10.1142/S0219749915500537
Jing. H. et al. (2018). Nanoparticle sensing with a spinning resonator. Optica 5, 1424. DOI: https://doi.org/10.1364/OPTICA.5.001424
Mirza. I. M. Ge. W. and Jing. H. (2019). Optical nonreciprocity and slow light in coupled spinning optomechanical resonators. Opt. Exp. 27, 25515. DOI: https://doi.org/10.1364/oe.27.025515
Gibbs. H. (1985). Optical Bistability: Controlling light with light. (Academic, New York,).
DOI: https://doi.org/10.1007/978-3-540-38950-7_46
Peyghambarian. N. and Gibbs. H. M. (1985). Optical bistability for optical signal processing and computing. Optical Engineering 24, 68. DOI: https://doi.org/10.1117/12.7973427
Xu. L. and Wang. B.C. (2002). Optical spectral bistability in a semiconductor fibre ring laser through gain saturation in an SOA. IEEE Photon. Tech. Lett. 14, 149.
DOI: https://doi.org/10.1109/68.980477
Mao. Q. and Lit. J.W. (2003). L-band fibre laser with wide tuning range based on dual-wavelength optical bistability in linear overlapping grating cavities. IEEE J. Quant. Electron 39, 1252.
DOI: https://doi.org/10.1002/mop.11198
Faraon, A. et al. (2011). Integrated quantum optical networks based on quantum dots and photonic crystals. New J. Phys. 13, 055025.
DOI: http://doi.org//10.1088/1367-2630/13/5/055025
Sete. E.A. and Eleuch. H. (2012). Controllable nonlinear effects in an optomechanical resonator containing a quantum well. Phys. Rev.. A. 85, 043824. DOI: https://doi.org/10.1103/PhysRevA.85.043824
Gao. M. et al. (2015). Self-sustained oscillation and dynamical multistability of optomechanical systems in the extremely-large-amplitude regime. Phys. Rev.. A. 91, 013833.
DOI: https://doi.org/10.1103/PhysRevA.91.013833
Yan. D. et al. (2015). Duality and bistability in an optomechanical cavity coupled to a Rydberg superatom. Phys. Rev.. A. 91, 023813. DOI: https://doi.org/10.1103/PhysRevA.91.023813
Mukherjee. K. and Jana. P. C. (2019). Controlled optical bistability in parity-time symmetry micro-cavities: Possibility of all-optical switching. Physica E: Low-dimensional systems and nanostructures 117, 113780. DOI: https://doi.org/10.1016/j.physe.2019.113780
Irvine. W. T. M. et al. (2006). Strong coupling between single photons in semiconductor microcavities. Phys. Rev.. Lett. 96, 057405.
DOI: https://doi.org/10.1103/PhysRevLett.96.057405
Yang. Z. et al. (2007). Enhanced second-harmonic generation in AlGaAs microring resonators. Opt. Lett. 32, 826.
DOI: https://doi.org/10.1364/OL.32.000826
Andreani. L. C. Panzarini. G. and Gerard. J. M. (1999). Strong-coupling regime for quantum boxes in pillar microcavities: Theory. Phys. Rev.. B 60, 13276. DOI: https://doi.org/10.1103/PhysRevB.60.13276
Skauli. T. et al. (2002). Measurement of the nonlinear coefficient orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation. Opt. Lett. 27, 628. DOI: https://doi.org/10.1364/OL.27.000628
Bergfeld. S. Daum. W. (2003). Second-harmonic generation in GaAs: Experiment versus theoretical predictions of X_xyz^((2)). Phys. Rev. Lett. 90, 036801. DOI: http://doi.org//10.1103/PhysRevLett.90.036801
Chen. J. Levine. Z. H. and Wilkins. J. W. (1995). Calculated second-harmonic susceptibilities of BN, AlN, and GaN. Appl. Phys. Lett. 66, 9. DOI: https://doi.org/10.1063/1.113835
Sanford. N. A. et al. (2005). Measurement of second-order susceptibilities of GaN and AlGaN. J. App. Phys. 97, 053512. https://doi.org/10.1063/1.1852695
Roland. I. et al. (2016). Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks. Sci. Rep. 6, 34191.
DOI: https://doi.org/10.1038/srep34191
May. S. et al. (2019). Second-harmonic generation in AlGaAs-on-insulator waveguides. Opt. Lett. 44, 1339
DOI: https://doi.org/10.1364/OL.44.001339
GMalykin. B. (2000). The Sagnac effect: correct and incorrect explanations. Phys. Usp. 43, 1229.
DOI: https://doi.org/10.1070/pu2000v043n12ABEH000830
Franke, A. S. Gibson, G. Boyd, R. W. Padgett. M. J. (2011). Rotary photon drag enhanced by a slow-light medium. Science 333, 65.
DOI: https://doi.org/10.1126/science.1203984
Maayani. S. et al. (2018). Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569.
DOI: https://doi.org/10.1038/s41586-018-0245-5
Arita. Y. Mazilu. M. and Dholakia. K. (2013). Laser-induced rotation and cooling of a trapped microgyroscope in a vacuum. Nat. Comm. 4, 2374. DOI: https://doi.org/10.1038/ncomms3374
Monteiro. F. Ghosh. S. Assendelft. E. C. V. and Moore. D. C. (2018). Optical rotation of levitated spheres in high vacuum. Phys. Rev. A. 97, 051802(R). DOI: http://dx.doi.org/10.1103/PhysRevA.97.051802
Ahn. J. et al. (2018). Optically levitated nano-dumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett. 121, 033603. DOI: https://doi.org/10.1103/PhysRevLett.121.033603
Reimann. R. et al. (2018). GHz rotation of an optically trapped nanoparticle in a vacuum. Phys. Rev. Lett. 121, 033602.
DOI: https://doi.org/10.1103/PhysRevLett.121.033602
Wang. K. Wu. Q. Yu. Y. F. Zhang. Z. M. (2019). Nonreciprocal photon blockade in a two-mode cavity with a second-order nonlinearity. Phys. Rev. A. 100, 053832. DOI: https://doi.org/10.1103/PhysRevA.100.053832