Vibration Analysis and Motion Control Method for an Under-Actuated Tower Crane

Main Article Content

Roberto P. L. Caporali

Abstract

In this paper, we developed a solution for controlling a tower crane thought as a no-rigid system, and therefore able to have deformation and, during the motion, vibrations. Particularly, large tower cranes show high structural dynamics. Under external excitations, the payload tends to sway around its vertical position and this motion is coupled to the resulting dynamic vibration of the crane structure. These induced vibrations may cause instability and serious damage to the crane system. Furthermore, the energy stored in the flexible structure of a tower crane causes vibrations in the structure during the acceleration and deceleration of slewing movements. A crane operator perceives these vibrations as an unstable speed of the boom. Such behavior involves the control of the crane, particularly precise positioning and manual control of the crane movement at low pivoting speed. We define an Elastic model of the Slewing crane and analyze the bending and Torsional elasticity of the Tower, and the Jib Elasticity. With an approximated method, we calculate the natural wavelengths of the crane structure in the slewing direction. We consider the tower crane as a nonlinear under-actuated system. The motion equations are obtained considering both the normal vibration modes of the tower crane and the sway of the payload. An elastic model of the Slewing crane is achieved, modeling the crane jib as an Euler-Bernoulli beam. Even the payload dynamic is considered, developing an Anti-sway solution by the equation of the movement. We define an iterative calculation of the sway angles and obtain the corresponding velocity profiles, implementing two kinds of solution: an input-shaping control in open-loop, to be used with automatic positioning, and a “command smoothing” method in open-loop, used for reducing the sway of the payload with the operator control. These solutions lead to a reduction of the vibrations of the crane structure. As a consequence, the tower crane is not subject to the strong horizontal and vertical oscillations during the motion of the elastic structure.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Roberto P. L. Caporali , Tran., “Vibration Analysis and Motion Control Method for an Under-Actuated Tower Crane”, IJIES, vol. 11, no. 1, pp. 1–11, Jan. 2024, doi: 10.35940/ijies.A1088.11010124.
Section
Articles

How to Cite

[1]
Roberto P. L. Caporali , Tran., “Vibration Analysis and Motion Control Method for an Under-Actuated Tower Crane”, IJIES, vol. 11, no. 1, pp. 1–11, Jan. 2024, doi: 10.35940/ijies.A1088.11010124.
Share |

References

L. Ramli, Z. Mohamed, A. Abdullahi, HI Jaafar and IM Lazim, “Control strategies for crane systems: A comprehensive review”, Mechanical Systems and Signal Processing, 2017. DOI:10.1016/j.ymssp.2017.03.015. https://doi.org/10.1016/j.ymssp.2017.03.015

D. Kruk and M. Sulowicz, “AHRS Based Anti-Sway Tower Crane Controller”, 20th International Conference on Research and Education in Mechatronics, 2019. DOI: 10.1109/REM.2019.8744117 https://doi.org/10.1109/REM.2019.8744117

M. Zhang, Y. Zhang, H. Ouyang, C. Ma and X. Cheng. “Modeling and Adaptive Control for Tower Crane Systems with Varying Cable Lengths”, Proceedings of the11th International Conference on Modelling, Identification and Control, 2019. DOI: 10.1007/978-981-15-0474-7-21. https://doi.org/10.1007/978-981-15-0474-7_21

H. Chen, Y. Fang, N. Sun. “A tower crane tracking control method with swing suppression”, Conference: 2017 Chinese Automation Congress, 2017. DOI: 10.1109/CAC.2017.8243407. https://doi.org/10.1109/CAC.2017.8243407

Y. Wu, N. Sun, H. Chen and Y. Fang. “Adaptive Output Feedback Control for 5-DOF Varying-Cable-Length Tower Cranes With Cargo Mass Estimation”. IEEE Transactions on Industrial Informatics, 2020. DOI: 10.1109/REM.2019.8744117. https://doi.org/10.1109/REM.2019.8744117

T. Yang, N. Sun, H. Chen and Y. Fang. “Observer-Based Nonlinear Control for Tower Cranes Suffering From Uncertain Friction and Actuator Constraints with Experimental Verification”, IEEE Transactions on Industrial Informatics, 2020. DOI:10.1109/TIE.2020.2992972. https://doi.org/10.1109/TIE.2020.2992972

N. Sun, Y. Wu, H. Chen and Y. Fang. “Anti-swing Cargo Transportation of Under-actuated Tower Crane Systems by a Nonlinear Controller Embedded With an Integral Term”, IEEE Transactions on Automation Science and Engineering, 2019, 1387-1398, 16-3. DOI:10.1109/TASE.2018.2889434. https://doi.org/10.1109/TASE.2018.2889434

N. Sun, Y. Fang, H. Chen, B. Iu and Y. Fu. “Slew Translation Positioning and Swing Suppression for 4-DOF Tower Cranes with Parametric Uncertainties: Design and Hardware Experimentation”, IEEE Transactions on Industrial Electronics, 2016; 1, 63-10. DOI:10.1109/TIE.2016.2587249.

P. Srivastava, A. Pal Singh, T. Srivastava, N.M. Singh. “Observer Design for Non-Linear Systems”, International Journal of Applied Engineering, 2013; 8-8, 957-967. https://doi.org/10.1109/TIE.2016.2587249

W. He, M. Tingting, H. Xiuyu, S. Sam Ge. “Unified iterative learning control for flexible structures with input constraints”, Automatica, 2018; 96, 146. DOI: 10.1016/j.automatica.2018.06.051. https://doi.org/10.1016/j.automatica.2018.06.051

W. He , S. Sam Ge, B. Voon Ee How, Y. Sang Choo and K. Hong. “Robust adaptive boundary control of a flexible marine riser with vessel dynamics”, Automatica, 2011; 47, 722. DOI:10.1016/j.automatica.2011.01.064. https://doi.org/10.1016/j.automatica.2011.01.064

Y.J. Liu and S. Tong. “Barrier Lyapunov Functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints”, Automatica, 2015; 64, 70. DOI:10.1016/j.automatica.2015.10.034 https://doi.org/10.1016/j.automatica.2015.10.034

G. Tysse, A. Cibicik, L. Tingelstad and O. Egeland. “Lyapunov-based damping controller with nonlinear MPC control of payload position for a knuckle boom crane”, Automatica, 2022; 140. DOI:10.1016/j.automatica.2022.110219. https://doi.org/10.1016/j.automatica.2022.110219

J. Schatz and R. Caverly. “Passivity-Based Adaptive Control of a 5-DOF Tower Crane”, 2021 IEEE Conference on Control Technology and Applications, 2021; 1109-1114. DOI:10.1109/CCTA48906.2021.9659155. https://doi.org/10.1109/CCTA48906.2021.9659155

B. Wen-Wen, H. Ren. “Horizontal Positioning and Anti-swinging Control Tower Crane Using Adaptive Sliding Mode Control”, 2018 Chinese Control and Decision Conference, 2018; 140. DOI:10.1109/CCDC.2018.84078209.

V. Pham, H. Cuong, H. Dong, H.T. Nguyen, L. Tuan, “Adaptive fractional-order fast terminal sliding mode with fault-tolerant control for underactuated mechanical systems: Application to tower cranes”, Automation in Construction, 2021; 123. DOI:10.1016/j.autcon.2020.103533. https://doi.org/10.1016/j.autcon.2020.103533

Z. Liu, N. Sun, Y. Wu, X. Xin and Y. Fang Y. “Nonlinear Sliding Mode Tracking Control of Underactuated Tower Cranes”, International Journal of Control, Automation and Systems, 2020. DOI:19. 10.1007/s12555-020-0033-5. https://doi.org/10.1007/s12555-020-0033-5

N. Sun, Y. Wu, H. Chen and Y. Fang. “Antiswing Cargo Transportation of Underactuated Tower Crane Systems by a Nonlinear Controller Embedded With an Integral Term”, IEEE Transactions on Automation Science and Engineering, 2019; 1-12. DOI:10.1109/TASE.2018.2889434. https://doi.org/10.1109/TASE.2018.2889434

L. Shu-Guang, Z. Long and Chao-Qi. “An ADRC-based Positioning and Anti-swing Control for Tower Crane”, Conference: 2021 China Automation Congress, 2021; 7880-7884. DOI:10.1109/CAC53003.2021.9728161. https://doi.org/10.1109/CAC53003.2021.9728161

F. Schlagenhauf and W.E. Singhose, “Comparison of Sway Reduction Controllers for Construction Cranes”, IEEE 14th International Conference on Control and Automation, 2018; 1101-1106. DOI:10.1109/ICCA.2018.8444294. https://doi.org/10.1109/ICCA.2018.8444294

A. Alfadhli and E. Khorshid. “Payload Oscillation Control of Tower Crane Using Smooth Command Input”, Journal of Vibration and Control, 2021. DOI: 10.1177/10775463211054640. https://doi.org/10.1177/10775463211054640

S. Iles, J. Matusko and F. Kolonic. “Sequential distributed predictive control of a 3D tower crane”, Control Engineering Practice, 2018; 22-35, 79. DOI: 10.1016/j.conengprac.2018.07.001. https://doi.org/10.1016/j.conengprac.2018.07.001

J. Wang, B. Chen, H. Ouyang and L. Xu. “Study on an Embedded Monitoring and Control System of Tower Crane”, Proceedings of the 4th International Conference on Sustainable Energy and Environmental Engineering, 2016. DOI: 10.2991/icseee-15.2016.126. https://doi.org/10.2991/icseee-15.2016.126

R. Capkova, A. Kozakova and M. Minar , “Experimental Modelling and Control of a Tower Crane in the Frequency domain'', Journal of Mechanical Engineering, 2019, vol. 69, no. 3, pp. 17-26. DOI: 10.2478/scjme-2019-0025. https://doi.org/10.2478/scjme-2019-0025

D. Blackburn, J. Lawrence, J. Danielson, W.E. Singhose, T. Kamoi and A. Taura. “Radial-motion assisted command shapers for nonlinear tower crane rotational slewing”, Control Engineering Practice, 2010; 523-531, 18. DOI:10.1016/j.conengprac.2010.01.014. https://doi.org/10.1016/j.conengprac.2010.01.014

L. Shehata and A. El-Badawy. “Anti-sway control of a tower crane using inverse dynamics”, 2nd International Conference on Engineering and Technology, 2014. DOI:10.1109/ICEngTechnol.2014.7016747. https://doi.org/10.1109/ICEngTechnol.2014.7016747

J.H. Montonen, N. Nevaranta, M. Niemelä and T. Lindh.” Comparison of Extrainsensitive Input Shaping and Swing-Angle-Estimation-Based Slew Control Approaches for a Tower Crane”, Applied Sciences. 2022, Vol.12. pp. 5945. DOI: 10.3390/app12125945. https://doi.org/10.3390/app12125945

M. Zhang, Y.F. Zhang, X. Cheng X. “Model-Free Adaptive Integral Sliding Mode Control for 4-DOF Tower Crane Systems”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2019; 708-713. DOI:10.1109/AIM.2019.8868534. https://doi.org/10.1109/AIM.2019.8868534

M. Zhang, Y.F. Zhang, H. Ouyang, C. Ma and X. Cheng, “Adaptive integral sliding mode control with payload sway reduction for 4-DOF tower crane systems”, Nonlinear Dynamics, 2020, Vol. 99. DOI:10.1007/s11071-020-05471-3. https://doi.org/10.1007/s11071-020-05471-3

Z. Liu, T. Yang, N. Sun and Y. Fang. “An Antiswing Trajectory Planning Method With State Constraints for 4-DOF Tower Cranes: Design and Experiments”, IEEE Access, 2019; 1-1. DOI:10.1109/ACCESS.2019.2915999. https://doi.org/10.1109/ACCESS.2019.2915999

G. Li, X. Ma, Z. Li and Y. Li. “Time-Polynomial-Based Optimal Trajectory Planning for Double-Pendulum Tower Crane With Full-State Constraints and Obstacle Avoidance”. IEEE/ASME Transactions on Mechatronics, 2022, PP. 1-14. DOI: 10.1109/tmech.2022.3210536. https://doi.org/10.1109/TMECH.2022.3210536

Roberto P. L. Caporali, “Iterative Method for controlling the sway of a payload on tower (slewing) cranes using a command profile approach”, International Journal of Innovative Computing, Information and Control, 2018, Vol. 14, 4, 1169-1187. DOI: 10.24507/ijicic.14.04.1169. https://doi.org/10.24940/ijird/2022/v11/i7/JUL22007

Roberto P. L. Caporali, “Anti-Sway control on a Harbor Crane system using a Command Smoothing iterative method”, International Journal of Innovative Research & Development, 2022, Vol. 11, 7, 21-31. DOI: 10.24940/ijird/2022/v11/i7/JUL22007.

C. Juraszek, “Method for controlling the Slewing movement of the rotary part of a Tower Crane”, United States Patent, Assignee Manitowoc Crane, US 8,235,230 B2, 2012.

Y. Yunhua and Y. Yao. “Tower crane, swing control system and swing control method”, China Patent, CN103274299A; 2013.

W. Devesse. “Slew Control Methods for Tower Cranes”, Master of Science Thesis, Sweden, commissioned by ABB, 2012.

C. Juraszek, “Method for controlling the Slewing movement of the rotary part of a Tower Crane”, United States Patent, Assignee Manitowoc Crane, US 8,235,230 B2, 2012.

R.P.L. Caporali. “Method and Device to control in open-loop the sway of pay-load for Slewing Cranes”, European Patent, EP2896590, 2015.

M.H. Ghawzani, A.H. Alnujaie, M.L. Chandravanshi, D. Deepak, C. Singh, M. Kumar, Y.S. Choo and F.S. Cui , “Failure Analyses of Tower Crane using FEM and theoretical studies”, Journal of Mechanical Design and Vibration, 2019, Vol. 7, No. 1, 33. DOI:10.53370/001c.36800. https://doi.org/10.53370/001c.36800

F. Ju, Y.S. Choo and F.S.Cui. “Dynamic response of tower crane induced by the pendulum motion of the payload”, International Journal of Solids and Structures, 2006; 376-389, 43. DOI:10.1016/j.ijsolstr.2005.03.078. https://doi.org/10.1016/j.ijsolstr.2005.03.078

F. Liu, J. Yang, J. Wang and C. Liu. “Swing Characteristics and Vibration Feature of Tower Cranes under Compound Working Condition”, Hindawi Shock and Vibration, 2021. DOI:10.1155/2021/8997396. https://doi.org/10.1155/2021/8997396

X. Cao, Y. Yang, W. Wang and Gu Z. “Rigid-Flexible Coupling Dynamic Modeling of a Tower Crane with Long Flexible Boom”, International Conference on Mechanical Design, 2018; 39-57. DOI:10.1007/978-981-10-6553-8-4. https://doi.org/10.1007/978-981-10-6553-8_4

R.P.L. Caporali, “Anti-sway method for reducing vibrations on a tower crane structure”, International Journal of Nonlinear Sciences and Numerical Simulation, 2021, DOI: 10.1515/ijnsns-2021-0046. https://doi.org/10.1515/ijnsns-2021-0046

F. Rauscher and O. Sawodny, “An Elastic Jib Model for the Slewing Control of Tower Cranes”, Science Direct IFAC PapersOnLine, 2017, Vol. 50-1, pp.9796-9801. DOI: 10.1016/j.ifacol.2017.08.886. https://doi.org/10.1016/j.ifacol.2017.08.886

G. Rigatos, M. Abbaszadeh and J. Pomares, “Nonlinear optimal control for the 4-DOF underactuated robotic tower crane”, Autonomous Intelligent Systems, 2022. DOI:10.1007/s43684-022-00040-4. https://doi.org/10.1007/s43684-022-00040-4

R.P.L. Caporali, “Vibration Normal Modes of a Jib Crane modeled as an Euler–Bernoulli boom using FEM”, International Journal of Basic Sciences and Applied Computing, 2023, DOI:10.35940/ijbsac.D0509.1210423. https://doi.org/10.35940/ijbsac.D0509.1210423

R.P.L. Caporali, “Analysis of the System Stability for an anti-Sway method relative to Harbour Cranes”, International Journal of Recent Engineering Research and Development, 2022, ISSN: 2455-8761.

M. Petyt, Finite Element Vibration Analysis. Cambridge University Press, 1990, ch. 3-11. https://doi.org/10.1017/CBO9780511624292

G. Diana, F. Cheli, Dinamica e Vibrazione dei Sistemi. Torino, UTET, 1993.

Small Composition-X System of Air Flow & Solar with Novel SWAY Translate to Enhance the SWAY Quality. (2019). In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 2S4, pp. 573–577). https://doi.org/10.35940/ijitee.b1203.1292s419

Kasim, M. A. B., Hanafi, S. R. B. M., & Suki, N. M. (2019). Relevance of Technology Acceptance Model for the Implementation of Value Added Tax (VAT) In the United Arab Emirates (UAE): Evidence of Distinctive Behavioral Connections. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 3, pp. 6357–6365). https://doi.org/10.35940/ijrte.c5784.098319

Balate, A. M., & Patil, H. R. M. (2020). Assessment of Response Reduction Factor of Flat Slab Structures by Pushover Analysis. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 6, pp. 157–163). https://doi.org/10.35940/ijeat.f1355.089620