Review of Progress on Plasmonic Enhanced Solar Cells
Main Article Content
Abstract
Developments in plasmonic photovoltaics have yielded new mechanisms of trapping light. In this review, we provide an overview of the light-trapping mechanisms to improve the efficiency of solar cells. Specifically, this work presents a concise review and addresses factors such as light absorption, light scattering, near-field enhancement, and localised surface plasmons. Light absorption and charge recombination are the major limiting factors affecting the efficiency of photovoltaic solar cells. The review also examines emerging theories and their relationship to technologies involving plasmonic materials. The use of metallic nanoparticles in solar cells enables the occurrence of surface plasmon resonance (SPR). Surface plasmon resonance occurs when light excites the electrons at the metal surface, causing electrons in the metal to become excited and move parallel to the surface. The surface plasmon resonance induces a resonance effect that occurs when the conduction electrons of metal nanoparticles interact with incident photons. This resonance effect generates an oscillating electric field that drives the conduction electrons to oscillate coherently, inducing a localised surface plasmon (LSP). These localised surface plasmon results in absorption and scattering of light. Light is deflected or re-radiated by the metallic nanoparticles due to the excitation of localised surface plasmons. Hence, plasmonic metallic nanoparticles improve the efficiency of solar cells by concentrating or trapping light at the absorber layer. The dimensions, such as size and shape of the nanoparticles, directly influence both light scattering and near-field enhancement. The elongated nanoparticles interact more effectively with light than spherical nanoparticles, resulting in improved light absorption and enhanced solar cell efficiency.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Jaiswal, K. K. et al. Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus, vol. 7, Preprint (2022). DOI: https://doi.org/10.1016/j.nexus.2022.100118
Mostakim, K. & Hasanuzzaman, M. Solar photovoltaic thermal systems. in Technologies for Solar Thermal Energy: Theory, Design and, Optimization 123–150 (Elsevier, 2022). DOI: http://doi.org/10.1016/B978-0-12-823959-9.00005-2
Gielen, D. et al. The role of renewable energy in the global energy transformation. Energy Strategy Reviews 24, 38–50 (2019).
DOI: https://doi.org/10.1016/j.esr.2019.01.006
Chen, L. X. Organic Solar Cells: Recent Progress and Challenges. ACS Energy Letters vol. 4 2537–2539 Preprint at (2019).
DOI: https://doi.org/10.1021/acsenergylett.9b02071
Sun, C., Wang, Z., Wang, X. & Liu, J. A Surface Design for Enhancement of Light Trapping Efficiencies in Thin Film Silicon Solar Cells. Plasmonics11, 1003–1010 (2016). DOI: http://doi.org/10.1007/s11468-015-0135-8
Shaghouli, E., Granpayeh, N. & Manavizadeh, N. Plasmonic enhanced ultra-thin solar cell: A combined approach using fractal and nano-antenna structure to maximize absorption. Results Phys50 (2023). DOI: https://doi.org/10.1016/j.rinp.2023.106600
Murugadoss, G., Murugan, D., Bhojanaa, K. B. & Pandikumar, A. Plasmonic Photoanodes for Dye-Sensitized Solar Cells. in Encyclopedia of Renewable Energy, Sustainability and the Environment (First Edition) (ed. Rahimpour, M. R.) 789–798 (Elsevier, Oxford, 2024).
DOI: https://doi.org/10.1016/B978-0-323-93940-9.00138-9
Shiyani, T., Mahapatra, S.K. & Banerjee, I. Plasmonic Solar Cells. In Fundamentals of Solar Cell Design (2023).
DOI: http://doi.org/10.1002/9781119725022.ch2
Olaimat, M., Yousefi, L., Ramahi, O., Olaimat, M. M. & Ramahi, O. M. Using Plasmonics and Nanoparticles to Enhance the Efficiency of Solar Cells: Review of Latest Technologies. Microwave Near-Field Sensors for Material Detection View Project Using Plasmonics and Nanoparticles to Enhance the Efficiency of Solar Cells: Review of Latest Technologies. (2021). https://www.researchgate.net/publication/348339454
Huang, Q. H. X. F. Z. Lu, Y. Plasmonic Thin Film Solar Cells. Nanostructured Solar Cells InTech (2017) https://www.intechopen.com/chapters/52513
Jia, N. et al. Thermoelectric materials and transport physics. Materials Today Physics21, 100519 (2021).
DOI: https://doi.org/10.1016/j.mtphys.2021.100519
Mangalgiri, G. M., Manley, P., Riedel, W. & Schmid, M. Dielectric Nanorod Scattering and its Influence on Material Interfaces. Sci Rep 7, (2017). DOI: http://doi.org/10.1038/s41598-017-03721-w
Amalathas, A. P. & Alkaisi, M. M. Nanostructures for light trapping in thin film solar cells. Micromachines, vol. 10, Preprint (2019).
DOI: https://doi.org/10.3390/mi10090619
Zhou, J. & Vijayavenkataraman, S. 3D-printable conductive materials for tissue engineering and biomedical applications. Bioprinting vol. 24 Preprint at (2021). DOI: https://doi.org/10.1016/j.bprint.2021.e00166
Olaimat, M. M., Yousefi, L. & Ramahi, O. M. Using plasmonics and nanoparticles to enhance the efficiency of solar cells: review of latest technologies. Journal of the Optical Society of America B38, 638 (2021). DOI: https://doi.org/10.1364/JOSAB.411712
Jang, Y. H. et al. Plasmonic Solar Cells: From Rational Design to Mechanism Overview. Chemical Reviews vol. 116 Preprint at
DOI: https://doi.org/10.1021/acs.chemrev.6b00302
Mcoyi, M. P., Mpofu, K. T., Sekhwama, M. & Mthunzi-Kufa, P. Developments in Localized Surface Plasmon Resonance. Plasmonics Preprint at (2024). DOI: https://doi.org/10.1007/s11468-024-02620-x
Mcoyi, M. P., Mpofu, K. T., Sekhwama, M. & Mthunzi-Kufa, P. Developments in Localized Surface Plasmon Resonance. Plasmonics Preprint at (2024). DOI: https://doi.org/10.1007/s11468-024-02620-x
Mandal, P. & Sharma, S. Progress in plasmonic solar cell efficiency improvement: A status review. Renewable and Sustainable Energy Reviews65, 537–552 (2016). DOI: https://doi.org/10.1016/j.rser.2016.07.031
Zhang, Z., Fang, Y., Wang, W., Chen, L. & Sun, M. Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions. Advanced Science3, 1500215 (2016). DOI: https://doi.org/10.1002/advs.201500215
Mohsin, A. S. M. et al. Efficiency improvement of thin film solar cell using silver pyramid array and antireflective layer. Heliyon9, (2023).DOI: https://doi.org/10.1016/j.heliyon.2023.e16749
Hekmat, M., Shafiekhani, A. & Khabir, M. Near field and far field plasmonic enhancements with bilayers of different dimensions AgNPs@DLC for improved current density in silicon solar. Sci Rep12, (2022). DOI: http://doi.org/10.1038/s41598-022-22911-9
Jang, Y. H. et al. Plasmonic Solar Cells: From Rational Design to Mechanism Overview. Chem Rev116, (2016).
DOI: https://pubs.acs.org/doi/10.1021/acs.chemrev.6b00302
Jana, J., Ganguly, M. & Pal, T. Enlightening Surface Plasmon Resonance Effect of Metal Nanoparticles for Practical Spectroscopic Application. RSC Adv.6, (2016). DOI: https://doi.org/10.1039/C6RA14173K
Karak, N. Chapter 1 - Fundamentals of Nanomaterials and Polymer Nanocomposites. In Nanomaterials and Polymer Nanocomposites (ed. Karak, N.) 1–45 (Elsevier, 2019). DOI: https://doi.org/10.1016/B978-0-12-814615-6.00001-1
Shih, C. K. & Sanders, C. Low-loss plasmonic metals epitaxially grown on semiconductors. in Plasmonic Materials and Metastructures: Fundamentals, Current Status, and Perspectives 73–101 (Elsevier, 2023). DOI: http://doi.org/10.1016/B978-0-323-85379-8.00003-4
Ali, A., El-Mellouhi, F., Mitra, A. & Aïssa, B. Research Progress of Plasmonic Nanostructure-Enhanced Photovoltaic Solar Cells. Nanomaterials12, 788 (2022). DOI: https://doi.org/10.3390/nano12050788
Alzoubi, F. Y., Ahmad, A. A., Aljarrah, I. A., Migdadi, A. B. & Al-Bataineh, Q. M. Localize surface plasmon resonance of silver nanoparticles using Mie theory. Journal of Materials Science: Materials in Electronics34, (2023). DOI: http://doi.org/10.1007/s10854-023-11304-x
Alkhalayfeh, M. A., Aziz, A. A. & Pakhuruddin, M. Z. An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles. Renewable and Sustainable Energy Reviews141, 110726 (2021). DOI: http://doi.org/10.1016/j.rser.2021.110726
Chen, Y., Cheng, Y. & Sun, M. Physical Mechanisms on Plasmon-Enhanced Organic Solar Cells. Journal of Physical Chemistry C125, 21301–21309 (2021). DOI: https://doi.org/10.1021/acs.jpcc.1c07020
Shin, J. et al. Harvesting near- and far-field plasmonic enhancements from large size gold nanoparticles for improved performance in organic bulk heterojunction solar cells. Org Electron66, 94–101 (2019). DOI: https://doi.org/10.1016/j.orgel.2018.12.024
Ibrahim Zamkoye, I., Lucas, B. & Vedraine, S. Synergistic Effects of Localized Surface Plasmon Resonance, Surface Plasmon Polariton, and Waveguide Plasmonic Resonance on the Same Material: A Promising Hypothesis to Enhance Organic Solar Cell Efficiency. Nanomaterials13, (2023). DOI: http://doi.org/10.3390/nano13152209
Hekmat, M., Shafiekhani, A. & Khabir, M. Near field and far field plasmonic enhancements with bilayers of different dimensions AgNPs@DLC for improved current density in silicon solar. Sci Rep 12, (2022). https://www.nature.com/articles/s41598-022-22911-9
Alkhalayfeh, M. A., Aziz, A. A. & Pakhuruddin, M. Z. An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles. Renewable and Sustainable Energy Reviews141, 110726 (2021). DOI: http://doi.org/10.1016/j.rser.2021.110726
Mulat, S. A., Hone, F. G., Bekri, N. &Tegegne, N. A. Improving the Light Harvest of Plasmonic-Based Organic Solar Cells by Utilizing Dielectric Core–Shells. Plasmonics (2024) DOI: http://doi.org/10.1007/s11468-024-02597-7
Manjavacas, A., Zundel, L. & Sanders, S. Analysis of the Limits of the Near-Field Produced by Nanoparticle Arrays. ACS Nano13, (2019). https://pubs.acs.org/doi/abs/10.1021/acsnano.9b05031
Yu, H., Peng, Y., Yang, Y. & Li, Z. Y. Plasmon-enhanced light–matter interactions and applications. npj Computational Materials vol. 5 Preprint at (2019). DOI: https://doi.org/10.1038/s41524-019-0184-1
Wang, X., Wang, J. & Sun, M. Plasmon-driven molecular photodissociations. Appl Mater Today 15, 212–235 (2019).
DOI: https://doi.org/10.1016/j.apmt.2019.01.011
Olaimat, M., Yousefi, L., Ramahi, O., Olaimat, M. M. & Ramahi, O. M. Using Plasmonics and Nanoparticles to Enhance the Efficiency of Solar Cells: Review of Latest Technologies. https://www.researchgate.net/publication/348339454 (2021).
Ou, W. et al. iScience Plasmonic metal nanostructures: concepts, challenges and opportunities in photo-mediated chemical transformations. DOI: https://doi.org/10.1016/j.isci.2020.101982
Fu, X. & Cui, T. J. Recent progress on metamaterials: From effective medium model to real-time information processing system. Prog Quantum Electron 67, 100223 (2019). DOI: https://doi.org/10.1016/j.pquantelec.2019.05.001
Hassan, S., El-Shaer, A., Oraby, A. H. & Salim, E. Investigations of charge extraction and trap-assisted recombination in polymer solar cells via hole transport layer doped with NiO nanoparticles. Opt. Mater. (Amst) 145, 114413 (2023).
DOI: http://doi.org/10.1016/j.optmat.2023.114413
Nourolahi, H., Behjat, A., Hosseini Zarch, S. M. M. & Bolorizadeh, M. A. Silver nanoparticle plasmonic effects on hole-transport material-free mesoporous heterojunction perovskite solar cells. Solar Energy139, 475–483 (2016). DOI: https://doi.org/10.1016/j.solener.2016.10.023
Sun, Y. et al. Improving light harvesting and charge extraction of polymer solar cells upon buffer layer doping. Solar Energy 202, 80–85 (2020). DOI: https://doi.org/10.1016/j.solener.2020.03.105
Bastianini, F. et al. Using Ag nanoparticles in the electron transport layer of perovskite solar cells to improve efficiency. Solar Energy268, 112318 (2024). DOI: https://doi.org/10.1016/j.solener.2024.112318
Khdary, N. H., Almuarqab, B. T. & El Enany, G. Nanoparticle-Embedded Polymers and Their Applications: A Review. Membranes vol. 13 Preprint at DOI: https://doi.org/10.3390/membranes13050537 (2023).
Bastianini, F. et al. Using Ag nanoparticles in the electron transport layer of perovskite solar cells to improve efficiency. Solar Energy268, (2024). DOI: https://doi.org/10.1016/j.solener.2024.112318
Omrani, M. K., Fallah, H., Choy, K. L. & Abdi-Jalebi, M. Impact of hybrid plasmonic nanoparticles on the charge carrier mobility of P3HT: PCBM polymer solar cells. Sci Rep 11, (2021). https://www.nature.com/articles/s41598-021-99095-1
Alkhalayfeh, M. A., Aziz, A. A., Pakhuruddin, M. Z. & Katubi, K. M. M. Plasmonic Effects of Au@Ag Nanoparticles in Buffer and Active Layers of Polymer Solar Cells for Efficiency Enhancement. Materials 15 15 (2022). DOI: https://doi.org/10.3390/ma15165472
Ali, A., El-Mellouhi, F., Mitra, A. & Aïssa, B. Research Progress of Plasmonic Nanostructure-Enhanced Photovoltaic Solar Cells. Nanomaterials12, 788 (2022). DOI: https://doi.org/10.3390/nano12050788
Shaghouli, E., Granpayeh, N. & Manavizadeh, N. Plasmonic enhanced ultra-thin solar cell: A combined approach using fractal and nano-antenna structure to maximize absorption. Results Phys50 (2023). DOI: https://doi.org/10.1016/j.solmat.2009.08.006
Liu, S. et al. A review on plasmonic nanostructures for efficiency enhancement of organic solar cells. Materials Today Physics24, 100680 (2022). DOI: https://doi.org/10.1016/j.mtphys.2022.100680
Omrani, M. K., Fallah, H., Choy, K. L. & Abdi-Jalebi, M. Impact of hybrid plasmonic nanoparticles on the charge carrier mobility of P3HT: PCBM polymer solar cells. Sci Rep 11, (2021). https://www.nature.com/articles/s41598-021-99095-1
Josein Mohammadi, M., Eskandari, M. & Fathi, D. Effects of the location and size of plasmonic nanoparticles (Ag and Au) in improving the optical absorption and efficiency of perovskite solar cells. J Alloys Compd877, 160177 (2021).