Adaptive Leadership for Innovation Ecosystems: A Resilience-Driven Approach

Main Article Content

Dr. A. Karunamurthy
Dr. S. Pougajendy

Abstract

This research presents a multilevel resilience-driven adaptive leadership framework that integrates psychological resilience principles with adaptive leadership methodologies to enhance contemporary innovation ecosystems. The framework addresses deficiencies in leadership theory by utilizing a hierarchical model that operates across individual, team, and organizational levels. Resilience is measured using empirical indicators that reflect real-time recovery dynamics and innovation performance. A composite resilience index combines the ability to recover from stress, be creative, and make quick decisions, based on historical data from entrepreneurial crisis-response scenarios. To make the framework work in practice, a cascaded neural system is built. This system combines a transformer-based encoder for processing multimodal information with a graph convolutional network that shows how different parts of the ecosystem depend on each other. This enables early identification of weaknesses and supports targeted, data-driven interventions. Furthermore, traditional performance dashboards are reimagined as resilience-optimised control panels, and adaptive resource-allocation protocols dynamically prioritise initiatives based on their resilience-weighted innovation potential. Stress-testing simulations are used to make fragility curves that predict system thresholds. An optimization algorithm based on quantum mechanics helps schedule interventions to improve resilience with as little disruption to operations as possible. The framework provides a quantitatively substantiated and pragmatic methodology for leadership in volatile, technology-driven contexts by integrating disaster-response strategies with innovation-feedback systems. Empirical evidence shows that both ecosystem robustness and entrepreneurial adaptability improve substantially when stress levels are high. This research integrates psychological resilience theory with computational leadership science, creating novel avenues for the development of sustainable, adaptive innovation systems.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biographies

Dr. A. Karunamurthy, Associate Professor, Department of Computer Applications & CSE, Sri Manakula Vinayagar Engineering College (Autonomous) Puducherry, India.



Dr. S. Pougajendy, Professor, Department of Management Studies (MBA), Sri Manakula Vinayagar Engineering College (Autonomous) Puducherry, India.




How to Cite

[1]
Dr. A. Karunamurthy and Dr. S. Pougajendy , Trans., “Adaptive Leadership for Innovation Ecosystems: A Resilience-Driven Approach”, IJIES, vol. 12, no. 12, pp. 1–9, Dec. 2025, doi: 10.35940/ijies.K1133.12121225.
Share |

References

Bai, Y. (2025). Transformational leadership, dual innovation, and organisational adaptive capacity. Current Psychology. DOI: https://doi.org/10.1007/s12144-025-08478-4.

Labrague, L. J. (2021). Psychological resilience, coping behaviours and social support among health care workers during the COVID-19 pandemic: A systematic review of quantitative studies. Journal of Nursing Management, 29(7), 1893-1905. DOI: https://doi.org/10.1111/jonm.13336.

Riggio, R. E., & Newstead, T. (2023). Crisis leadership. Annual Review of Organizational Psychology and Organizational Behavior, 10, 27–52. DOI: https://doi.org/10.1146/annurev-orgpsych-120920-044838

Attah, R. U., Ogunsola, O. Y., & Garba, B. M. P. (2023). Leadership in the digital age: Emerging trends in business strategy, innovation, and technology integration. Iconic Research and Engineering Journals. ttps://www.irejournals.com/paper-details/1704146

Duchek, S. (2020). Organisational resilience: A capability-based perspective. Journal of Business Research, 113, 372-381. DOI: https://doi.org/10.1007/s40685-019-0085-7.

Hillmann, J., & Guenther, E. (2021). Organizational resilience: A valuable construct for management research? International Journal of Management Reviews, 23(1), 7–44. DOI: https://doi.org/10.1111/ijmr.12239

Baroncelli, S., Caputo, A., Santini, E., et al. (2024). Resilience and entrepreneurial decision-making: The heterogeneity among Italian innovative start-ups. Entrepreneurship and Regional Development.

DOI: https://doi.org/10.1080/08985626.2023.2295959

Kurowski, K., Pecyna, T., Slysz, M., Różycki, R., et al. (2023). Application of quantum approximate optimization algorithm to job shop scheduling problem. European Journal of Operational Research, 309(2), 509–521. DOI: https://doi.org/10.1016/j.ejor.2022.08.047.

Kreiterling, C. (2023). Digital innovation and entrepreneurship: A review of challenges in competitive markets. Journal of Innovation & Entrepreneurship, 12, Article 49. DOI: https://doi.org/10.1186/s13731-023-00320-0.

Xie, Y., Desouza, K. C., & Jabbari, M. (2023). On organizational robustness: A conceptual framework. Journal of Contingencies and Crisis Management, 31(1), 52–63. DOI: https://doi.org/10.1111/1468-5973.12423

de Mol, E., Ho, V. T., & Pollack, J. M. (2020). Predicting entrepreneurial success through leadership, feedback-seeking, and learning orientation. Journal of Business Venturing Insights, 13, e00174. DOI: ttps://doi.org/10.1016/j.jbvi.2020.e00174.

Conduah, A. K., & Essiaw, M. N. (2022). Resilience and entrepreneurship: A systematic review [version 1; peer review: 1 approved]. F1000Research, 11, 348. DOI: https://doi.org/10.12688/f1000research.75473.1.

Dheer, R. J. S., & Lenartowicz, T. (2019). Cognitive flexibility: Impact on entrepreneurial intentions. Journal of Vocational Behaviour, 112, 237–255. DOI: https://doi.org/10.1016/j.jvb.2019.103339

Chen, Y., Liu, H., Lin, S., Wang, Y., Zhang, Q., & Feng, L. (2024). The impact of social capital on community resilience: A comparative study of seven flood-prone communities in Nanjing, China. Land, 13(8), 1145.

DOI: https://doi.org/10.3390/land13081145.

Gucciardi, D. F., Crane, M., Ntoumanis, N., et al. (2018). The emergence of team resilience: A multilevel conceptual model of facilitating factors. Journal of Occupational and Organisational Psychology, 91(4), 729–768. DOI: https://doi.org/10.1111/joop.12237

Tîşu, L., & Vîrgă, D. (2023). Entrepreneurial well-being and performance: antecedents and mediators. Frontiers in Psychology, 14, Article 1112397. DOI: https://doi.org/10.5465/amp.2016.0142

Van Zyl, I., & Hearn, G. (2021). Digital leadership competencies: A review. European Management Journal, 39(3), 357–369. DOI: https://doi.org/10.1016/j.emj.2020.09.006.

Seibel, M., Kaufman, E. K., Cletzer, D. A., et al. (2023). Advancing adaptive leadership through ADAPTION‐INNOVATION theory: Enhancements to the holding environment. Journal of Leadership & Organisational Studies, 30(4), 499–515.DOI: https://doi.org/10.1177/15480518231171252

Fasnacht, D. (2024). Ecosystem leadership: Open and digital ecosystems. Springer.

DOI: https://doi.org/10.1007/978-3-658-45395-4_8

Del Pino-Marchito, A., Galán-García, A., & Plaza-Mejía, M. d. l. Á. (2025). The Hersey and Blanchard’s Situational Leadership Model Revisited: Its Role in Sustainable Organisational Development. World, 6(2), 63. DOI: https://doi.org/10.3390/world6020063.

Abdi, S., Yazdani, M., & Najafi, E. (2024). Evaluating the resiliency of the innovation ecosystem using agent-based modelling and systems dynamics. Journal of Safety Science and Resilience, 5, 19–30. DOI: https://doi.org/10.1016/j.jnlssr.2024.03.004

Yuyi, M., et al. (2025). “Exploring the impact of platform leadership on employee innovative behaviour: A sequential explanatory mixed-method.” Frontiers in Psychology. DOI: https://doi.org/10.3389/fpsyg.2025.1435683.

Hassan, H. E., Ibrahiem, K. H., & Madian, A. H. (2025). Optimising multiprocessor performance in real-time systems using an innovative genetic algorithm approach. Scientific Reports, 15, 3842. DOI: https://doi.org/10.1038/s41598-024-80910-4).

A sociotechnical system perspective on AI Kudina, O., & van de Poel, I. (2024). A sociotechnical system perspective on AI. Minds & Machines, 34, 21. DOI: https://doi.org/10.1007/s11023-024-09680-2

Innovating the Innovation System Thinking: a Systemism Model — Skjølsvik, K. O. & Kaloudis, A. (2024). Innovating the Innovation System Thinking: a Systemism Model. Journal of the Knowledge Economy, 15, 11912–11931.

DOI: https://doi.org/10.1007/s13132-023-01561-w

Bai, X. (2024). Build networked resilience across cities. Science, 384(6688), 768–770. DOI: 10.1126/science.ado5304

DOI: https://doi.org/10.1126/science.ado5304.

Josephs, N., Peng, S., & Crawford, F. W. (2022). Communication network dynamics in a large organizational hierarchy. The Annals of Applied Statistics. Advance online publication. DOI: https://doi.org/10.48550/arXiv.2208.01208.

Li, M., & Chen, G. (2024). Modelling biological networks: Computational approaches to network dynamics. Computational Molecular Biology, 14(2), 45-53. DOI: https://doi.org/10.5376/cmb.2024.14.0006.

Richard S. Lazarus (2020). Progress on a cognitive-motivational-relational theory of emotion. Psychological Inquiry, 2(1), 1-27. DOI: https://doi.org/10.1207/s15327965pli0201_1.

Pihkala, P. (2025). Ecological grief and the dual-process model of coping with bereavement. Religions, 16(4), 411.

DOI: https://doi.org/10.3390/rel16040411.

Alabduljader, N., Solomon, G. T., Kang, J. H., Choi, D. Y., & Al-Abduljader, S. T. (2023). Cognitive styles and entrepreneurial intentions: A cross-cultural comparison. Journal of Small Business Management, 61(2), 738–768.

DOI: https://doi.org/10.1080/00472778.2020.1816430.

Russo, S. J., Murrough, J. W., Han, M-H., Charney, D. S., & Nestler, E. J. (2021). Neurobiology of Resilience. Nature Neuroscience, 15(11), 1475-1484. DOI: https://doi.org/10.1038/nn.3234.

Paribello, P., Branchi, I., Viglione, A., Mancini, G. F., Morena, M., & Campolongo, P. (2024). Biomarkers of stress resilience: A review. Neuroscience Applied, 3(2-3), 104052. DOI: https://doi.org/10.1016/j.nsa.2024.104052.

Tucaliuc, M., Ratiu, L., Curseu, P. L., & Muntean, A. F. (2025). The bright and dark sides of distributed leadership in schools: A joint structural and functional perspective on distributed leadership, work performance and job satisfaction. Education Sciences, 15(4), 481. DOI: https://doi.org/10.3390/educsci15040481.

Bowser, G., Ho, S. S., Ziebell, A., Lazendic-Galloway, J., & et al. (2024). Networking and collaborating: The role of partnerships across sectors to achieve educational goals in sustainability. Sustainable Earth Reviews, 7, 17. DOI: https://doi.org/10.1186/s42055-024-00080-z.

Grenier, S. (2024). Self-determination theory and its implications for team motivation: A multilevel model of team motivation processes. Applied Psychology. DOI: https://doi.org/10.1111/apps.%2012526.

Armillotta, M., & Gorgi, P. (2023). Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models. arXiv. DOI: https://doi.org/10.48550/arXiv.2309.06100.

Asselman, A., Khaldi, M., & Aammou, S. (2023). Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interactive Learning Environments, Advance online publication.

DOI: https://doi.org/10.1080/10494820.2023.2191430

Kurowski, K., Pecyna, T., Slysz, M., Różycki, R., Waligóra, G., & Wȩglarz, J. (2023). Application of quantum approximate optimization algorithm to job shop scheduling problem. European Journal of Operational Research, 310(2), 518-528. DOI: https://doi.org/10.1016/j.ejor.2023.03.013.

Nyoni, A. M., & Kaushal, S. (2022). Sustainable knowledge management during crisis: Focus on the COVID-19 pandemic: Business Information Review, 39(7). DOI: https://doi.org/10.1177/02663821221109928.

Xu, M., Chen, C., & Zhang, Z. (2023). Neural and cognitive mechanisms of aggression and decision-making in adolescents: A systematic review. Frontiers in Psychology, 14, 1150024.DOI: https://doi.org/10.3389/fpsyg.%202023.1150024.

Magalhães, R., & Nunes, A. (2024). Digital leadership and data-driven decision-making: Building analytical leadership capabilities. Leadership & Organization Development Journal, 45(1), 50-67.DOI: https://doi.org/10.1108/LODJ-05-2023-0235.

Sharma, S., & Singh, A. (2022). Collaborative resilience in organisations: Navigating crises through adaptive capacity. Journal of Contingencies and Crisis Management, 30(4), 459-471.DOI: https://doi.org/10.1111/1468-5973.12422.

Brown, R., & Mason, C. (2021). Entrepreneurial ecosystems and technology commercialisation in the digital era. Technological Forecasting and Social Change, 168, 120762.DOI: https://doi.org/10.1016/j.techfore.2021.120762.

Masten, A. S., & Kalstabakken, A. W. (2023). Resilience in developmental systems: Advances and applications. Development and Psychopathology, 35(2), 523-536.DOI: https://doi.org/10.1093/oso/9780190095888.003.0007

Han, H., Liu, Z., Barrios, M., Li, J., Zeng, Z., Sarhan, N., & Awwad, E. M. (2024). Time series forecasting model for non-stationary series pattern extraction using deep learning and GARCH modelling. Journal of Cloud Computing, 13, Article 2. DOI: https://doi.org/10.1186/s13677-023-00576-7.

Liu, X., et al. (2024). Improving polyp detection accuracy with hybrid AI models: Reducing false positives in colonoscopy. Endoscopy International Open, 12(3), E279-E286.DOI: https://doi.org/10.1055/a-2221-7735.

Wong, J., & Gao, Y. (2024). Leveraging historical data for AI-driven scientific discovery: A systematic review. Data Science Journal, 23(1), 9. DOI: https://doi.org/10.5334/dsj-2024-009.

Selvarajan, S., et al. (2024). A comprehensive study on modern optimization techniques for engineering problems. Applied Intelligence, 54(3), 1-24. DOI: https://doi.org/10.1007/s10462-024-10829-9.

Warrick, D. D. (2023). Revisiting resistance to change and how to manage it. Business Horizons, 66(6), 697–707.

DOI: https://doi.org/10.1016/j.bushor.2023.102461.

Yang, Y., Lin, M., Zhao, H., Peng, Y., Huang, F., & Lu, Z. (2024). A survey of recent methods for addressing AI fairness and bias in biomedicine. arXiv. DOI: https://doi.org/10.48550/arXiv.2402.08250.

Jo, N., Tang, B., Dullerud, K., Aghaei, S., Rice, E., & Vayanos, P. (2023). Fairness in contextual resource allocation systems: Metrics and incompatibility results. Proceedings of the AAAI Conference on Artificial Intelligence, 37(10), 11837–11846. DOI: https://doi.org/10.1609/aaai.v37i10.26397.

Novelli, C., Taddeo, M., & Floridi, L. (2024). Accountability in artificial intelligence: What it is and how it works. AI & Society, Advance online publication. DOI: https://doi.org/10.1007/s00146-024-01799-6

Aghion, P., & Griffith, R. (2024). Innovation and inequalities. Oxford Open Economics, 1(1), oeae013.

DOI: https://doi.org/10.1093/oxfoec/oeae013

Aghion, P., & Griffith, R. (2024). Innovation and inequalities. Oxford Open Economics, 3(Supplement_1), i1002–i1005. DOI: https://doi.org/10.1093/ooec/odad057.

Freitas Junior, J. C., Cabral, P. M. F., & Brinkhues, R. A. (2020). Digital transformation: The gap between digital leadership and business performance. AMCIS 2020 Proceedings. ttps://aisel.aisnet.org/amcis2020/org_transformation/org_transformation/12

Tubis, A. A. (2023). Digital maturity assessment model for the organisational and process dimensions. Sustainability, 15(8), 6621. DOI: https://doi.org/10.3390/su15086621

Fernandez, J. D., Brennecke, M., Barbereau, T., et al. (2023). Federated learning: Organisational opportunities, challenges, and adoption strategies. arXiv preprint arXiv:2308.02219. DOI: https://doi.org/10.48550/arXiv.2308.02219

Shi, J., Zhang, P., Li, Y., & Chen, H. (2024). Research on the impact of inter-industry innovation network structures on collaborative innovation performance. Systems, 12(6), 211. DOI: https://doi.org/10.3390/systems12060211.

Puranam, P. (2021). Human–AI collaborative decision-making as an organization design problem. Journal of Organisation Design, 10(1), 37–41. DOI: https://doi.org/10.1186/s41469-021-00102-z

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 > >>