A Comprehensive Approach for Harnessing Entanglement for Next-Generation Authentication: From Passwords to Qubits

Main Article Content

Srivaramangai Ramanujam
Furkan Sayyed

Abstract

Traditional authentication mechanisms, such as password-based systems and multi-factor authentication (MFA), face escalating vulnerabilities in an era marked by sophisticated cyberattacks, quantum computing advancements, and evolving regulatory demands. Passwords, inherently prone to phishing, brute-force attacks, and credential reuse, remain a weak link in cybersecurity despite decades of incremental improvements. Meanwhile, emerging technologies like quantum computing threaten to dismantle classical cryptographic protocols, necessitating a paradigm shift in authentication frameworks. This paper proposes From Passwords to Qubits: Harnessing Entanglement for Next-Generation Authentication,” a novel approach that leverages the principles of quantum mechanics—specifically quantum entanglement—to design secure, scalable, and future-proof authentication systems. The implications of this research extend beyond cybersecurity: it lays the groundwork for a future where quantum entanglement underpins secure digital identities, blockchain systems, and IoT ecosystems. As quantum computing matures, the fusion of entanglement-driven authentication with classical protocols will be pivotal in safeguarding sensitive data against existential threats, heralding a new era of trust in the digital age.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

A Comprehensive Approach for Harnessing Entanglement for Next-Generation Authentication: From Passwords to Qubits (Srivaramangai Ramanujam & Furkan Sayyed , Trans.). (2025). International Journal of Emerging Science and Engineering (IJESE), 13(5), 21-31. https://doi.org/10.35940/ijese.D2593.13050425
Share |

References

Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics, 74(1), 145–195 DOI: https://doi.org/10.1103/RevModPhys.74.145

Bozzio, M., Vyvlecka, M., Cosacchi, M., Nawrath, C., Seidelmann, T., Loredo, J. C., Portalupi, S. L., Axt, V. M., Michler, P., & Walther, P. (2022). Enhancing quantum cryptography with quantum dot single-photon sources. npj Quantum Information, 8(104). DOI: https://doi.org/10.1038/s41534-022-00626-z

Bloom, Y., Fields, I., Maslennikov, A., & Rozenman, G. G. (2022). Quantum Cryptography—A Simplified Undergraduate Experiment and Simulation. Physics, 4(1), 104–123. DOI: https://doi.org/10.3390/physics4010009

Basset, F. B., Rota, M. B., Schimpf, C., Tedeschi, D., Zeuner, K. D., Covre da Silva, S. F., Reindl, M., Zwiller, V., Jöns, K. D., Rastelli, A., & Trotta, R. (2019). Entanglement Swapping with Photons Generated on Demand by a Quantum Dot. Physical Review Letters, 123(16), 160501. DOI: https://doi.org/10.1103/PhysRevLett.123.160501

Cardoso-Isidoro, C., & Delgado, F. (2023). Quantum authentication using double teleportation. Journal of Physics: Conference Series, 2448(1), 012018 https://iopscience.iop.org/article/10.1088/1742-6596/2448/1/012018/pdf

Barnum, H., Crépeau, C., Gottesman, D., Smith, A., & Tapp, A. (2002). Authentication of quantum messages. arXiv preprint arXiv:quant-ph/0205128 https://arxiv.org/pdf/quant-ph/0205128

González-Guillén, C. E., González Vasco, M. I., Johnson, F., & Pérez del Pozo, Á. L. (2021). An Attack on Zawadzki’s Quantum Authentication Scheme. Entropy, 23(4), 389. DOI: https://doi.org/10.3390/e23040389

Boykin, P. O., & Roychowdhury, V. (2000). Optimal Encryption of Quantum Bits. arXiv preprint arXiv:quant-ph/0003059. https://arxiv.org/abs/quant-ph/0003059

Liu, J., Wang, H., Sun, Y., Fu, C., & Guo, J. (2015). Real-coded quantum-inspired genetic algorithm-based BP neural network algorithm. Mathematical Problems in Engineering, 2015, 571295. DOI: https://doi.org/10.1155/2015/571295

Wang, H., Liu, J., Zhi, J., & Fu, C. (2013). The improvement of quantum genetic algorithm and its application on function optimization. Mathematical Problems in Engineering, 2013, 730749. DOI: https://doi.org/10.1155/2013/730749

Kanamori, Y., Yoo, S. M., Gregory, D. A., & Sheldon, F. T. (2009). Authentication protocol using quantum superposition states. International Journal of Network Security, 9(2), 101–108. http://ijns.jalaxy.com.tw/contents/ijns-v9-n2/ijns-2009-v9-n2-p101-108.pdf

Sikeridis, D., Kampanakis, P., & Devetsikiotis, M. (2020). Post-quantum authentication in TLS 1.3: A performance study. Network and Distributed Systems Security (NDSS) Symposium 2020. https://eprint.iacr.org/2020/071.pdf

Samandari, J., & Gritti, C. (2023). Post-quantum authentication in the MQTT protocol. Journal of Cybersecurity and Privacy, 3(3), 416–434 DOI: https://doi.org/10.3390/jcp3030021

Langley, A., Riddoch, A., Wilk, A., Vicente, A., Krasic, C., Zhang, D., Yang, F., Kouranov, F., Swett, I., Iyengar, J., et.al. (2017). The QUIC transport protocol: Design and internet-scale deployment. Proceedings of SIGCOMM '17, Los Angeles, CA, USA, August 21-25, 2017 DOI: https://doi.org/10.1145/3098822.3098842

Li, T., Liu, B., & Zhang, J. (2024). Quantum privacy query protocol based on GHZ-like states. Applied Sciences, 14(608). DOI: https://doi.org/10.3390/app14020608

Lo, H.-K., Curty, M., & Qi, B. (2012). Measurement device-independent quantum key distribution. Physical Review Letters, 108(13), 130503. DOI: https://doi.org/10.1103/PhysRevLett.108.130503

Diamanti, E., Lo, H.-K., Qi, B., & Yuan, Z. (2016). Practical challenges in quantum key distribution. npj Quantum Information, 2, 16025. DOI: https://doi.org/10.1038/npjqi.2016.25

Zeydan, E., Turk, Y., Aksoy, B., & Ozturk, S. B. (2024). Recent advances in post-quantum cryptography for networks: A survey. Applied Sciences, 14(20608). DOI: http://dx.doi.org/10.1109/MobiSecServ50855.2022.9727214

M, G., B, G., & Wahi, A. (2020). Quantum Key Distribution Based-on Refraction and Polarization Entanglement. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 6, pp. 2911–2918). DOI: https://doi.org/10.35940/ijrte.f8222.038620

Tom, Dr. J. J., P. Anebo, Dr. N., Onyekwelu, Dr. B. A., Wilfred, A., & E. Eyo, R. (2023). Quantum Computers and Algorithms: A Threat to Classical Cryptographic Systems. In International Journal of Engineering and Advanced Technology (Vol. 12, Issue 5, pp. 25–38). DOI: https://doi.org/10.35940/ijeat.e4153.0612523

Shivani Gaba, Shifali Singla, Deepak Kumar, A Genetic Improved Quantum Cryptography Model to Optimize Network Communication. (2019). In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 9S, pp. 256–259). DOI: https://doi.org/10.35940/ijitee.i1040.0789s19

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>