The Extension of the Riemann’s Zeta Function
Main Article Content
Abstract
In mathematics, the search for exact formulas giving all the prime numbers, certain families of prime numbers or the n-th prime number has generally proved to be vain, which has led to contenting oneself with approximate formulas [8]. The purpose of this article is to give a new proof of the Riemann hypothesis [4]-which is closely related to the distribution of prime numbers- by y introducing S^ a new extension of the of the Riemann zeta function.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
N. M. KATZ and P. SARNAK Random Matrices, Frobenius Eigenvalues, and Monodromy. Colloq.Publ. 45, Amer. Math. Soc., Providence, 1999. https://doi.org/10.1090/coll/045
N. M. KATZ and P. SARNAK, zeroes of zeta functions and symmetry, Bulletin (New Series) of the american mathematical society, Volume 36, Number 1, January 1999, Pages 1–26. https://doi.org/10.1090/S0273-0979-99-00766-1
Roshdi Rashed, Entre arithmétique et algèbre: Recherches sur l'histoire des mathématiques arabes, journal Paris, 1984.
M. Sghiar, The Special Functions and the Proof of the Riemann’s Hypothesis. IOSR Journal of Mathematics (IOSR-JM), 2020, 16, Issue 3, Serie II, pp.10 - 12.
M Sghiar. Des applications génératrices des nombres premiers et cinq preuves de l-hypothèse de Riemann. Pioneer Journal of Algebra Number Theory and its Applications, 2015, 10 (1-2), pp.1-31. http://www.pspchv.com/content PJNTA-vol-10-issues-1-2.
M. Sghiar. The Mertens function and the proof of the Riemann’s hypothesis, International Journal of Engineering and Advanced Technology (IJEAT), ISNN: 2249-8958, Volume- 7 Issue-2, December 2017. (Improved in https://hal.science/hal-01667383)
M. SGHIAR "La preuve de la conjecture de Birch et Swinnerton-Dyer. “IOSR Journal of Mathematics (IOSR-JM) 14.3 (2018): 50-59
William H. Mills, A prime representing function, Bull. Amer. Math. Soc., 1947, p. 604. https://doi.org/10.1090/S0002-9904-1947-08849-2