The Extension of the Riemann’s Zeta Function

Main Article Content

Mohamed Sghiar

Abstract

In mathematics, the search for exact formulas giving all the prime numbers, certain families of prime numbers or the n-th prime number has generally proved to be vain, which has led to contenting oneself with approximate formulas [8]. The purpose of this article is to give a new proof of the Riemann hypothesis [4]-which is closely related to the distribution of prime numbers- by y introducing S^ a new extension of the of the Riemann zeta function.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Mohamed Sghiar , Tran., “The Extension of the Riemann’s Zeta Function”, IJBSAC, vol. 10, no. 7, pp. 4–7, Mar. 2024, doi: 10.35940/ijbsac.A0502.10070324.
Section
Articles

How to Cite

[1]
Mohamed Sghiar , Tran., “The Extension of the Riemann’s Zeta Function”, IJBSAC, vol. 10, no. 7, pp. 4–7, Mar. 2024, doi: 10.35940/ijbsac.A0502.10070324.

References

N. M. KATZ and P. SARNAK Random Matrices, Frobenius Eigenvalues, and Monodromy. Colloq.Publ. 45, Amer. Math. Soc., Providence, 1999. https://doi.org/10.1090/coll/045

N. M. KATZ and P. SARNAK, zeroes of zeta functions and symmetry, Bulletin (New Series) of the american mathematical society, Volume 36, Number 1, January 1999, Pages 1–26. https://doi.org/10.1090/S0273-0979-99-00766-1

Roshdi Rashed, Entre arithmétique et algèbre: Recherches sur l'histoire des mathématiques arabes, journal Paris, 1984.

M. Sghiar, The Special Functions and the Proof of the Riemann’s Hypothesis. IOSR Journal of Mathematics (IOSR-JM), 2020, 16, Issue 3, Serie II, pp.10 - 12.

M Sghiar. Des applications génératrices des nombres premiers et cinq preuves de l-hypothèse de Riemann. Pioneer Journal of Algebra Number Theory and its Applications, 2015, 10 (1-2), pp.1-31. http://www.pspchv.com/content PJNTA-vol-10-issues-1-2.

M. Sghiar. The Mertens function and the proof of the Riemann’s hypothesis, International Journal of Engineering and Advanced Technology (IJEAT), ISNN: 2249-8958, Volume- 7 Issue-2, December 2017. (Improved in https://hal.science/hal-01667383)

M. SGHIAR "La preuve de la conjecture de Birch et Swinnerton-Dyer. “IOSR Journal of Mathematics (IOSR-JM) 14.3 (2018): 50-59

William H. Mills, A prime representing function, Bull. Amer. Math. Soc., 1947, p. 604. https://doi.org/10.1090/S0002-9904-1947-08849-2