Meta-Analysis and Review of Artificial Intelligence (AI) and Deep Learning Algorithms on Autonomous Vehicles (Avs) Via Vision-Based System: Current Trends, Issues, and Future Direction
Main Article Content
Abstract
The invention of autonomous vehicles (AVs) and their use in transportation have been substantially accelerated by technological developments in artificial intelligence (AI) and deep learning Algorithms. Vision-based systems are a crucial part of AVs for detecting their surroundings and making the right decisions. At the same time, they are in motion, thanks to massive data from numerous sensor devices and sophisticated computing power. They understand how AI and deep learning functions in AV systems are crucial in achieving the objective of full automation, or self-driving, systems. Previous studies have done a fantastic job of looking into various facets of using AI and deep learning in AV production. Nevertheless, few studies have provided a comprehensive analysis of existing methods for integrating AI in AVs to the research community. This paper offers a systematic review of the most important papers in this field of research. It seeks to close the knowledge gap by providing state-of-the-art practices, challenges, and future direction. Its specific goal is to examine the various algorithms, models, and techniques applied to AVs by enhancing AI and deep learning for effective vision, navigation, and location in making decisions. It looks into the methods now in use to determine the potential applications of AI and the difficulties and problems that come with putting them into practice. This study offers more insights into possible opportunities for utilizing AI and deep learning in conjunction with other developing technologies, based on an examination of current practices and technological advancements. Big data, high computing power, and high-resolution navigation; expanded simulation platforms through a vision-based system.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 9(8), 1295. Doi: https://doi.org/10.3390/electronics9081295
Al-Kaff, A., Martin, D., Garcia, F., de la Escalera, A., & Armingol, J. M. (2018). Survey of computer vision algorithms and applications for unmanned aerial vehicles. Expert Systems with Applications, 92, 447-463. DOI: https://doi.org/10.1016/j.eswa.2017.09.033
Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and autonomous systems, 57(5), 469-483. DOI: https://doi.org/10.1016/j.robot.2008.10.024
Bagloee, S. A., Tavana, M., Asadi, M., & Oliver, T. (2016). Autonomous vehicles: challenges, opportunities, and future implications for transportation policies. Journal of modern transportation, 24, 284-303. DOI: https://doi.org/10.1007/s40534-016-0117-3
Bathla, G., Bhadane, K., Singh, R. K., Kumar, R., Aluvalu, R., Krishnamurthi, R., Kumar, A., Thakur, R., & Basheer, S. (2022). Autonomous vehicles and intelligent automation: Applications, challenges, and opportunities. Mobile Information Systems, 2022(1), 7632892. DOI: https://doi.org/10.1155/2022/7632892
Bilik, I., Longman, O., Villeval, S., & Tabrikian, J. (2019). The rise of radar for autonomous vehicles: Signal processing solutions and future research directions. IEEE Signal Processing Magazine, 36(5), 20-31. DOI: https://doi.org/10.1109/MSP.2019.2926573
Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller, U., & Zhang, J. (2016). End-to-end learning for self-driving cars. arXiv preprint arXiv:1604.07316. DOI: https://doi.org/10.48550/arXiv.1604.07316
Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., & Beijbom, O. (2020). nuscenes: A multimodal dataset for autonomous driving. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Doi: https://doi.org/10.1109/CVPR42600.2020.01164
Chavez-Garcia, R. O., & Aycard, O. (2015). Multiple sensor fusion and classification for moving object detection and tracking. IEEE Transactions on Intelligent Transportation Systems, 17(2), 525-534. DOI: https://doi.org/10.1109/TITS.2015.2479925
Chen, G., Cao, H., Conradt, J., Tang, H., Rohrbein, F., & Knoll, A. (2020). Event-based neuromorphic vision for autonomous driving: A paradigm shift for bio-inspired visual sensing and perception. IEEE Signal Processing Magazine, 37(4), 34-49. DOI: https://doi.org/10.1109/MSP.2020.2985815
Cheng, J., Zhang, L., Chen, Q., Hu, X., & Cai, J. (2022). A review of visual SLAM methods for autonomous driving vehicles. Engineering Applications of Artificial Intelligence, 114, 104992. DOI: https://doi.org/10.1016/j.engappai.2022.104992
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. Proceedings of the IEEE conference on computer vision and pattern recognition, DOI: https://doi.org/10.1109/CVPR.2016.350
Dai, Y., & Lee, S.-G. (2020). Perception, planning, and control for self-driving systems based on onboard sensors. Advances in Mechanical Engineering, 12(9), 1687814020956494. DOI: https://doi.org/10.1177/1687814020956494
Dollar, P., Wojek, C., Schiele, B., & Perona, P. (2011). Pedestrian detection: An evaluation of the state of the art. IEEE transactions on pattern analysis and machine intelligence, 34(4), 743-761. DOI: https://doi.org/10.1109/TPAMI.2011.155
Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The Pascal visual object classes (VOC) challenge. International journal of computer vision, 88, 303-338. DOI: https://doi.org/10.1007/s11263-009-0275-4
Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? The Kitti vision benchmark suite. 2012 IEEE Conference on Computer Vision and Pattern Recognition, DOI: https://doi.org/10.1109/CVPR.2012.6248074
Harding, J., Powell, G., Yoon, R., Fikentscher, J., Doyle, C., Sade, D., Lukuc, M., Simons, J., & Wang, J. (2014). Vehicle-to-vehicle communications: the readiness of V2V technology for application.
https://www.automotivesafetycouncil.org/wp-content/uploads/2017/01/Readiness-of-V2V-Technology.pdf
Hashimoto, D. A., Rosman, G., Rus, D., & Meireles, O. R. (2018). Artificial intelligence in surgery: promises and perils. Annals of Surgery, 268(1), 70-76. DOI: https://doi.org/10.1097/SLA.0000000000002693
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, DOI: https://doi.org/10.1109/CVPR.2016.90
Hu, A., Cotter, F., Mohan, N., Gurau, C., & Kendall, A. (2020). Probabilistic future prediction for video scene understanding. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16, DOI: https://doi.org/10.48550/arXiv.2003.06409
Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., & Borchers, A. (2017). In-datacenter performance analysis of a tensor processing unit. Proceedings of the 44th Annual International Symposium on Computer Architecture, DOI: https://doi.org/10.1145/3079856.3080246
Krajewski, R., Bock, J., Kloeker, L., & Eckstein, L. (2018). The high dataset: A drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems. 2018 21st International Conference on Intelligent Transportation Systems (ITSC), DOI: https://doi.org/10.1109/ITSC.2018.8569552
Li, C., Wang, R., Li, J., & Fei, L. (2020). Face detection based on YOLOv3. Recent Trends in Intelligent Computing, Communication and Devices: Proceedings of ICCD 2018, DOI: https://doi.org/10.1007/978-981-13-9406-5_34
Liden, D. (2013). What Is a Driverless Car? WiseGeek. Retrieved, 11. https://www.scribd.com/document/324783105/Driverless-Car-Ieee-Format
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, Doi: https://doi.org/10.48550/arXiv.1405.0312
Ma, Y., Wang, Z., Yang, H., & Yang, L. (2020). Artificial intelligence applications in the development of autonomous vehicles: A survey. IEEE/CAA Journal of Automatica Sinica, 7(2), 315-329. DOI: https://doi.org/10.1109/JAS.2020.1003021
Mallozzi, P., Pelliccione, P., Knauss, A., Berger, C., & Mohammadiha, N. (2019). Autonomous vehicles: state of the art, future trends, and challenges. Automotive systems and software engineering: State of the art and future trends, 347-367. DOI: https://doi.org/10.1007/978-3-030-12157-0_16
Miglani, A., & Kumar, N. (2019). Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges. Vehicular Communications, 20, 100184. DOI: https://doi.org/10.1016/j.vehcom.2019.100184
Miura, S., & Kamijo, S. (2015). GPS error correction by multipath adaptation. International Journal of Intelligent Transportation Systems Research, 13, 1-8. DOI: https://doi.org/10.1007/s13177-013-0073-9
Naz, N., Ehsan, M. K., Amirzada, M. R., Ali, M. Y., & Qureshi, M. A. (2022). Intelligence of autonomous vehicles: A concise revisit. Journal of Sensors, 2022(1), 2690164. https://doi.org/10.1155/2022/2690164
Nguyen, M. T., Truong, L. H., & Le, T. T. (2021). Video surveillance processing algorithms utilizing artificial intelligence (AI) for unmanned autonomous vehicles (UAVs). MethodsX, 8, 101472. DOI: https://doi.org/10.1016/j.mex.2021.101472
Pinheiro, P., & Collobert, R. (2014). Recurrent convolutional neural networks for scene labelling. International conference on machine learning, Doi: https://doi.org/10.48550/arXiv.1306.2795
Ribeiro, I. A., Ribeiro, T., Lopes, G., & Ribeiro, A. F. (2023). End-to-end approach for autonomous driving: a supervised learning method using computer vision algorithms for dataset creation. Algorithms, 16(9), 411. DOI: https://doi.org/10.5220/0007575908330839
Sallab, A. E., Abdou, M., Perot, E., & Yogamani, S. (2017). Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532. DOI: https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
Shalev-Shwartz, S., Ben-Zrihem, N., Cohen, A., & Shashua, A. (2016). Long-term planning by short-term prediction. arXiv preprint arXiv:1602.01580. Doi: https://doi.org/10.48550/arXiv.1602.01580.
Stanchev, P., & Geske, J. (2016). Autonomous cars. History. State of art. Research problems. Distributed Computer and Communication Networks: 18th International Conference, DCCN 2015, Moscow, Russia, October 19-22, 2015, Revised Selected Papers 18, DOI: https://doi.org/10.1007/978-3-319-30843-2_1
Sutton, R. S., & Barto, A. G. (1999). Reinforcement learning: An introduction. Robotica, 17(2), 229-235. DOI: https://doi.org/10.1016/S0893-6080(99)00098-2
Thadeshwar, H., Shah, V., Jain, M., Chaudhari, R., & Badgujar, V. (2020). Artificial intelligence-based self-driving car. 2020 4th International Conference on Computer, Communication, and Signal Processing (ISP), DOI: https://doi.org/10.1109/ICCCSP49186.2020.9315223
Ullah, A., Muhammad, K., Hussain, T., Lee, M., & Baik, S. W. (2020). Deep LSTM-based sequence learning approaches for action and activity recognition. In Deep Learning in Computer Vision (pp. 127-150). CRC Press. DOI: https://doi.org/10.1201/9781351003827-5
Vishnukumar, H. J., Butting, B., Müller, C., & Sax, E. (2017). Machine learning and deep neural network—Artificial intelligence core for lab and real-world test and validation for ADAS and autonomous vehicles: AI for efficient and quality test and validation. 2017 Intelligent Systems Conference (IntelliSys), DOI: https://doi.org/10.1109/IntelliSys.2017.8324372
Zhang, J., Yang, K., & Stiefelhagen, R. (2021). ISSAFE: Improving semantic segmentation in accidents by fusing event-based data. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), DOI: https://doi.org/10.1109/IROS51168.2021.9636109
Shaik, I., Nittela, S. S., Hiwarkar, Dr. T., & Nalla, Dr. S. (2019). K-means Clustering Algorithm Based on E-Commerce Big Data. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 11, pp. 1910–1914). Doi: https://doi.org/10.35940/ijitee.K2121.0981119
Verma, Dr. P. K., & Dr. Preety. (2020). Application of K-Means Algorithm to Mapping Poverty Outline by Province in India. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 6, pp. 1045–1049). Doi: https://doi.org/10.35940/ijrte.F7357.038620
Maheswari, Dr. K. (2019). Finding Best Possible Number of Clusters using K-Means Algorithm. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 1s4, pp. 533–538). Doi: https://doi.org/10.35940/ijeat.A1119.1291S419