Meta-Analysis and Review of Artificial Intelligence (AI) and Deep Learning Algorithms on Autonomous Vehicles (Avs) Via Vision-Based System: Current Trends, Issues, and Future Direction

Main Article Content

Fidelis Nfwan Gonten
Professor Abdulsalam Ya'u Gital
Mr. Datti Useni
Mr. Larson Suwa

Abstract

The invention of autonomous vehicles (AVs) and their use in transportation have been substantially accelerated by technological developments in artificial intelligence (AI) and deep learning Algorithms. Vision-based systems are a crucial part of AVs for detecting their surroundings and making the right decisions. At the same time, they are in motion, thanks to massive data from numerous sensor devices and sophisticated computing power. They understand how AI and deep learning functions in AV systems are crucial in achieving the objective of full automation, or self-driving, systems. Previous studies have done a fantastic job of looking into various facets of using AI and deep learning in AV production. Nevertheless, few studies have provided a comprehensive analysis of existing methods for integrating AI in AVs to the research community. This paper offers a systematic review of the most important papers in this field of research. It seeks to close the knowledge gap by providing state-of-the-art practices, challenges, and future direction. Its specific goal is to examine the various algorithms, models, and techniques applied to AVs by enhancing AI and deep learning for effective vision, navigation, and location in making decisions. It looks into the methods now in use to determine the potential applications of AI and the difficulties and problems that come with putting them into practice. This study offers more insights into possible opportunities for utilizing AI and deep learning in conjunction with other developing technologies, based on an examination of current practices and technological advancements. Big data, high computing power, and high-resolution navigation; expanded simulation platforms through a vision-based system.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Fidelis Nfwan Gonten, Professor Abdulsalam Ya'u Gital, Mr. Datti Useni, and Mr. Larson Suwa , Trans., “Meta-Analysis and Review of Artificial Intelligence (AI) and Deep Learning Algorithms on Autonomous Vehicles (Avs) Via Vision-Based System: Current Trends, Issues, and Future Direction”, IJAENT, vol. 11, no. 12, pp. 1–9, Dec. 2024, doi: 10.35940/ijaent.I0484.11121224.
Section
Articles
Author Biographies

Professor Abdulsalam Ya'u Gital, Department of Computer Science, Abubakar Tafawa Balewa University Bauchi, Bauchi, Nigeria.



Mr. Datti Useni, Department of Computer Science, Abubakar Tafawa Balewa University Bauchi, Bauchi, Nigeria.



Mr. Larson Suwa, Department of Computer Science, Abubakar Tafawa Balewa University Bauchi, Bauchi, Nigeria.



How to Cite

[1]
Fidelis Nfwan Gonten, Professor Abdulsalam Ya'u Gital, Mr. Datti Useni, and Mr. Larson Suwa , Trans., “Meta-Analysis and Review of Artificial Intelligence (AI) and Deep Learning Algorithms on Autonomous Vehicles (Avs) Via Vision-Based System: Current Trends, Issues, and Future Direction”, IJAENT, vol. 11, no. 12, pp. 1–9, Dec. 2024, doi: 10.35940/ijaent.I0484.11121224.
Share |

References

Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 9(8), 1295. Doi: https://doi.org/10.3390/electronics9081295

Al-Kaff, A., Martin, D., Garcia, F., de la Escalera, A., & Armingol, J. M. (2018). Survey of computer vision algorithms and applications for unmanned aerial vehicles. Expert Systems with Applications, 92, 447-463. DOI: https://doi.org/10.1016/j.eswa.2017.09.033

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and autonomous systems, 57(5), 469-483. DOI: https://doi.org/10.1016/j.robot.2008.10.024

Bagloee, S. A., Tavana, M., Asadi, M., & Oliver, T. (2016). Autonomous vehicles: challenges, opportunities, and future implications for transportation policies. Journal of modern transportation, 24, 284-303. DOI: https://doi.org/10.1007/s40534-016-0117-3

Bathla, G., Bhadane, K., Singh, R. K., Kumar, R., Aluvalu, R., Krishnamurthi, R., Kumar, A., Thakur, R., & Basheer, S. (2022). Autonomous vehicles and intelligent automation: Applications, challenges, and opportunities. Mobile Information Systems, 2022(1), 7632892. DOI: https://doi.org/10.1155/2022/7632892

Bilik, I., Longman, O., Villeval, S., & Tabrikian, J. (2019). The rise of radar for autonomous vehicles: Signal processing solutions and future research directions. IEEE Signal Processing Magazine, 36(5), 20-31. DOI: https://doi.org/10.1109/MSP.2019.2926573

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller, U., & Zhang, J. (2016). End-to-end learning for self-driving cars. arXiv preprint arXiv:1604.07316. DOI: https://doi.org/10.48550/arXiv.1604.07316

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., & Beijbom, O. (2020). nuscenes: A multimodal dataset for autonomous driving. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Doi: https://doi.org/10.1109/CVPR42600.2020.01164

Chavez-Garcia, R. O., & Aycard, O. (2015). Multiple sensor fusion and classification for moving object detection and tracking. IEEE Transactions on Intelligent Transportation Systems, 17(2), 525-534. DOI: https://doi.org/10.1109/TITS.2015.2479925

Chen, G., Cao, H., Conradt, J., Tang, H., Rohrbein, F., & Knoll, A. (2020). Event-based neuromorphic vision for autonomous driving: A paradigm shift for bio-inspired visual sensing and perception. IEEE Signal Processing Magazine, 37(4), 34-49. DOI: https://doi.org/10.1109/MSP.2020.2985815

Cheng, J., Zhang, L., Chen, Q., Hu, X., & Cai, J. (2022). A review of visual SLAM methods for autonomous driving vehicles. Engineering Applications of Artificial Intelligence, 114, 104992. DOI: https://doi.org/10.1016/j.engappai.2022.104992

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. Proceedings of the IEEE conference on computer vision and pattern recognition, DOI: https://doi.org/10.1109/CVPR.2016.350

Dai, Y., & Lee, S.-G. (2020). Perception, planning, and control for self-driving systems based on onboard sensors. Advances in Mechanical Engineering, 12(9), 1687814020956494. DOI: https://doi.org/10.1177/1687814020956494

Dollar, P., Wojek, C., Schiele, B., & Perona, P. (2011). Pedestrian detection: An evaluation of the state of the art. IEEE transactions on pattern analysis and machine intelligence, 34(4), 743-761. DOI: https://doi.org/10.1109/TPAMI.2011.155

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The Pascal visual object classes (VOC) challenge. International journal of computer vision, 88, 303-338. DOI: https://doi.org/10.1007/s11263-009-0275-4

Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? The Kitti vision benchmark suite. 2012 IEEE Conference on Computer Vision and Pattern Recognition, DOI: https://doi.org/10.1109/CVPR.2012.6248074

Harding, J., Powell, G., Yoon, R., Fikentscher, J., Doyle, C., Sade, D., Lukuc, M., Simons, J., & Wang, J. (2014). Vehicle-to-vehicle communications: the readiness of V2V technology for application.

https://www.automotivesafetycouncil.org/wp-content/uploads/2017/01/Readiness-of-V2V-Technology.pdf

Hashimoto, D. A., Rosman, G., Rus, D., & Meireles, O. R. (2018). Artificial intelligence in surgery: promises and perils. Annals of Surgery, 268(1), 70-76. DOI: https://doi.org/10.1097/SLA.0000000000002693

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, DOI: https://doi.org/10.1109/CVPR.2016.90

Hu, A., Cotter, F., Mohan, N., Gurau, C., & Kendall, A. (2020). Probabilistic future prediction for video scene understanding. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16, DOI: https://doi.org/10.48550/arXiv.2003.06409

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., & Borchers, A. (2017). In-datacenter performance analysis of a tensor processing unit. Proceedings of the 44th Annual International Symposium on Computer Architecture, DOI: https://doi.org/10.1145/3079856.3080246

Krajewski, R., Bock, J., Kloeker, L., & Eckstein, L. (2018). The high dataset: A drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems. 2018 21st International Conference on Intelligent Transportation Systems (ITSC), DOI: https://doi.org/10.1109/ITSC.2018.8569552

Li, C., Wang, R., Li, J., & Fei, L. (2020). Face detection based on YOLOv3. Recent Trends in Intelligent Computing, Communication and Devices: Proceedings of ICCD 2018, DOI: https://doi.org/10.1007/978-981-13-9406-5_34

Liden, D. (2013). What Is a Driverless Car? WiseGeek. Retrieved, 11. https://www.scribd.com/document/324783105/Driverless-Car-Ieee-Format

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, Doi: https://doi.org/10.48550/arXiv.1405.0312

Ma, Y., Wang, Z., Yang, H., & Yang, L. (2020). Artificial intelligence applications in the development of autonomous vehicles: A survey. IEEE/CAA Journal of Automatica Sinica, 7(2), 315-329. DOI: https://doi.org/10.1109/JAS.2020.1003021

Mallozzi, P., Pelliccione, P., Knauss, A., Berger, C., & Mohammadiha, N. (2019). Autonomous vehicles: state of the art, future trends, and challenges. Automotive systems and software engineering: State of the art and future trends, 347-367. DOI: https://doi.org/10.1007/978-3-030-12157-0_16

Miglani, A., & Kumar, N. (2019). Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges. Vehicular Communications, 20, 100184. DOI: https://doi.org/10.1016/j.vehcom.2019.100184

Miura, S., & Kamijo, S. (2015). GPS error correction by multipath adaptation. International Journal of Intelligent Transportation Systems Research, 13, 1-8. DOI: https://doi.org/10.1007/s13177-013-0073-9

Naz, N., Ehsan, M. K., Amirzada, M. R., Ali, M. Y., & Qureshi, M. A. (2022). Intelligence of autonomous vehicles: A concise revisit. Journal of Sensors, 2022(1), 2690164. https://doi.org/10.1155/2022/2690164

Nguyen, M. T., Truong, L. H., & Le, T. T. (2021). Video surveillance processing algorithms utilizing artificial intelligence (AI) for unmanned autonomous vehicles (UAVs). MethodsX, 8, 101472. DOI: https://doi.org/10.1016/j.mex.2021.101472

Pinheiro, P., & Collobert, R. (2014). Recurrent convolutional neural networks for scene labelling. International conference on machine learning, Doi: https://doi.org/10.48550/arXiv.1306.2795

Ribeiro, I. A., Ribeiro, T., Lopes, G., & Ribeiro, A. F. (2023). End-to-end approach for autonomous driving: a supervised learning method using computer vision algorithms for dataset creation. Algorithms, 16(9), 411. DOI: https://doi.org/10.5220/0007575908330839

Sallab, A. E., Abdou, M., Perot, E., & Yogamani, S. (2017). Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532. DOI: https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023

Shalev-Shwartz, S., Ben-Zrihem, N., Cohen, A., & Shashua, A. (2016). Long-term planning by short-term prediction. arXiv preprint arXiv:1602.01580. Doi: https://doi.org/10.48550/arXiv.1602.01580.

Stanchev, P., & Geske, J. (2016). Autonomous cars. History. State of art. Research problems. Distributed Computer and Communication Networks: 18th International Conference, DCCN 2015, Moscow, Russia, October 19-22, 2015, Revised Selected Papers 18, DOI: https://doi.org/10.1007/978-3-319-30843-2_1

Sutton, R. S., & Barto, A. G. (1999). Reinforcement learning: An introduction. Robotica, 17(2), 229-235. DOI: https://doi.org/10.1016/S0893-6080(99)00098-2

Thadeshwar, H., Shah, V., Jain, M., Chaudhari, R., & Badgujar, V. (2020). Artificial intelligence-based self-driving car. 2020 4th International Conference on Computer, Communication, and Signal Processing (ISP), DOI: https://doi.org/10.1109/ICCCSP49186.2020.9315223

Ullah, A., Muhammad, K., Hussain, T., Lee, M., & Baik, S. W. (2020). Deep LSTM-based sequence learning approaches for action and activity recognition. In Deep Learning in Computer Vision (pp. 127-150). CRC Press. DOI: https://doi.org/10.1201/9781351003827-5

Vishnukumar, H. J., Butting, B., Müller, C., & Sax, E. (2017). Machine learning and deep neural network—Artificial intelligence core for lab and real-world test and validation for ADAS and autonomous vehicles: AI for efficient and quality test and validation. 2017 Intelligent Systems Conference (IntelliSys), DOI: https://doi.org/10.1109/IntelliSys.2017.8324372

Zhang, J., Yang, K., & Stiefelhagen, R. (2021). ISSAFE: Improving semantic segmentation in accidents by fusing event-based data. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), DOI: https://doi.org/10.1109/IROS51168.2021.9636109

Shaik, I., Nittela, S. S., Hiwarkar, Dr. T., & Nalla, Dr. S. (2019). K-means Clustering Algorithm Based on E-Commerce Big Data. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 11, pp. 1910–1914). Doi: https://doi.org/10.35940/ijitee.K2121.0981119

Verma, Dr. P. K., & Dr. Preety. (2020). Application of K-Means Algorithm to Mapping Poverty Outline by Province in India. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 6, pp. 1045–1049). Doi: https://doi.org/10.35940/ijrte.F7357.038620

Maheswari, Dr. K. (2019). Finding Best Possible Number of Clusters using K-Means Algorithm. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 1s4, pp. 533–538). Doi: https://doi.org/10.35940/ijeat.A1119.1291S419

Most read articles by the same author(s)

<< < 1 2