Molecular and Dissociative Adsorption of H2O on ZrO2/YSZ Surfaces

Main Article Content

Dilshod Nematov

Abstract

The work involves first-principles calculations to study the mechanism of adsorption of water molecules on the surface of ZrO2 and their yttrium-stabilized structures (YSZ). Calculations of the electronic properties of ZrO2 showed that during the m-t phase transformation of ZrO2, the Fermi level first shifts by 0.125 eV towards the conduction band, and then in the t-c region goes down by 0.08 eV. In this case, the band gaps for c-ZrO2, t-ZrO2 and m-ZrO2, respectively, are 5.140 eV, 5.898 eV and 5.288 eV. Calculations to determine the surface energy showed that t-ZrO2 (101) and m-ZrO2 (111) have the most stable structure, on the basis of which it was first discovered that the surface energy is somehow inversely related to the value of the band gap, since as the band gap increases, the surface energy tends to decrease. An analysis of the mechanism of water adsorption on the surface of t-ZrO2 (101) and t-YSZ (101) showed that H2O on unstabilized t-ZrO2 (101) is adsorbed dissociatively with an energy of −1.22 eV, as well as by the method of molecular chemisorption with an energy of −0.69 eV and the formation of a hydrogen bond with a bond length of 1.01 Å. In the case of t-YSZ (101), water is molecularly adsorbed onto the surface with an energy of −1.84 eV. Dissociative adsorption of water occurs at an energy of −1.23 eV, near the yttrium atom. The obtained results complement the database of research works carried out in the field of the application of biocompatible zirconium dioxide crystals and ceramics in green energy generation, and can be used in designing humidity-to-electricity converters and in creating solid oxide fuel cells based on ZrO2.

Downloads

Download data is not yet available.

Article Details

How to Cite
Molecular and Dissociative Adsorption of H2O on ZrO2/YSZ Surfaces. (2023). International Journal of Innovative Science and Modern Engineering (IJISME), 11(10), 1-7. https://doi.org/10.35940/ijisme.D7927.10111023
Section
Articles

How to Cite

Molecular and Dissociative Adsorption of H2O on ZrO2/YSZ Surfaces. (2023). International Journal of Innovative Science and Modern Engineering (IJISME), 11(10), 1-7. https://doi.org/10.35940/ijisme.D7927.10111023

References

Chevalier, J.; Gremillard, L.; Deville, S. Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants. Annu. Rev. Mater. Res. 2007, 37, 1–32. https://doi.org/10.1146/annurev.matsci.37.052506.084250.

Nikumbh, A.K.; Adhyapak, P.V. Formation characterization and rheological properties of zirconia and ce-ria-stabilized zirconia. Nat. Sci. 2010, 2, 694.

Lee, W.E.; Rainforth, M. Ceramic Microstructures: Property Control by Processing; Springer Science & Business Media: Berlin/Heidelberg, Germany,1994; p. 317.

Hecht, E.S.; Gupta, G.K.; Zhu, H.; Dean, A.M.; Kee, R.J.; Maier, L.; Deutschmann, O. Methane reforming kinetics within a Ni–YSZ SOFC anode support. Appl. Catal. A: Gen. 2005, 295, 40–51. https://doi.org/10.1016/j.apcata.2005.08.003.

Tanabe, K. Surface and catalytic properties of ZrO2. Mater. Chem. Phys. 1985, 13, 347–364. https://doi.org/10.1016/0254-0584(85)90064-1.

Liu, Y.; Parisi, J.; Sun, X.; Lei, Y. Solid-state gas sensors for high temperature applications—A review. J. Mater. Chem. A 2014, 2, 9919–9943. https://doi.org/10.1039/c3ta15008a.

Hisbergues, M.; Vendeville, S.; Vendeville, P. Zirconia, Established facts and perspectives for a biomaterial in dental im-plantology. J. Biomed. Mater. Res. Part B 2009, 88, 519–529.

Henderson, M.A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 2002, 46, 1–308. https://doi.org/10.1016/s0167-5729(01)00020-6.

Mu, R.; Zhao, Z.-J.; Dohnálek, Z.; Gong, J. Structural motifs of water on metal oxide surfaces. Chem. Soc. Rev. 2017, 46, 1785–1806. https://doi.org/10.1039/c6cs00864j.

Nematov, D.D.; Kholmurodov, K.T.; Husenzoda, M.A.; Lyubchyk, A.; Burhonzoda, A.S. Molecular Adsorption of H2O on TiO2 and TiO2: Y Surfaces. J. Hum. Earth Futur. 2022, 3, 213–222. https://doi.org/10.28991/hef-2022-03-02-07.

Campbell, C.T.; Sellers, J.R.V. Enthalpies and Entropies of Adsorption on Well-Defined Oxide Surfaces: Experimental Measurements. Chem. Rev. 2013, 113, 4106–4135. https://doi.org/10.1021/cr300329s.

Zhang, Z.; Bondarchuk, O.; Kay, B.D.; White, J.M.; Dohnálek, Z. Imaging Water Dissociation on TiO2(110): Evidence for Inequivalent Geminate OH Groups. J. Phys. Chem. B 2006, 110, 21840–21845. https://doi.org/10.1021/jp063619h.

Henderson, M.A. Structural Sensitivity in the Dissociation of Water on TiO2 Single-Crystal Surfaces. Langmuir 1996, 12, 5093–5098. https://doi.org/10.1021/la960360t.

Henderson, M.A.; Chambers, S.A. HREELS, TPD and XPS study of the interaction of water with the α-Cr2O3 (001) surface. Surf. Sci. 2000, 449, 135–150.

Henderson, M.A.; Joyce, S.A.; Rustad, J.R. Interaction of water with the (1 × 1) and (2 × 1) surfaces of α-Fe2O3 (012). Surf. Sci. 1998, 417, 66–81.

Hu, X.L.; Carrasco, J.; Klimeš, J.; Michaelides, A. Trends in water monomer adsorption and dissociation on flat insulating surfaces. Phys. Chem. Chem. Phys. 2011, 13, 12447–12453. https://doi.org/10.1039/c1cp20846b.

Lobo, A.; Conrad, H. Interaction of H2O with the RuO2(110) surface studied by HREELS and TDS. Surf. Sci. 2003, 523, 279–286. https://doi.org/10.1016/s0039-6028(02)02459-7.

Kan, H.H.; Colmyer, R.J.; Asthagiri, A.; Weaver, J.F. Adsorption of water on a PdO (101) thin film: Evidence of an adsorbed HO− H2O complex. J. Phys. Chem. C 2009, 113, 1495–1506.

Meier, M.; Hulva, J.; Jakub, Z.; Pavelec, J.; Setvin, M.; Bliem, R.; Schmid, M.; Diebold, U.; Franchini, C.; Parkinson, G.S. Water agglomerates on Fe3O4 (001). Proc. Natl. Acad. Sci. USA 2018, 115, E5642–E5650.

Radha, A.V.; Bomati-Miguel, O.; Ushakov, S.V.; Navrotsky, A.; Tartaj, P. Surface enthalpy, enthalpy of water ad-sorption, and phase stability in nanocrystalline monoclinic zirconia. J. Am. Ceram. Soc. 2009, 92, 133–140.

Doroshkevich, A.S.; Asgerov, E.B.; Shylo, A.V.; Lyubchyk, A.I.; Logunov, A.I.; Glazunova, V.A.; Islamov, A.K.; Turchenko, V.A.; Almasan, V.; Lazar, D.; et al. Direct conversion of the water adsorption energy to electricity on the surface of zirconia nanoparticles. Appl. Nanosci. 2019, 9, 1603–1609. https://doi.org/10.1007/s13204-019-00979-6.

Kock, E.M.; Kogler, M. In situ FT-IR spectroscopic study of CO2 and CO adsorption on Y2O3, ZrO2, and yttria-stabilized ZrO2. J. Phys. Chem. C 2013, 117, 17666–17673.

Kobayashi, K.; Kuwajima, H.; Masaki, T. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid State Ion. 1981, 3–4, 489–493. https://doi.org/10.1016/0167-2738(81)90138-7.

Liu, J., Gong, G., Han, Y., & Zhu, Y. (2017). New insights into the adsorption of oleate on cassiterite: A DFT study. Minerals, 7(12), 236.

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864.

Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996; 6:15–50

Sun, J., Ruzsinszky, A., & Perdew, J. P. (2015). Strongly constrained and appropriately normed semilocal density functional. Physical review letters, 115(3), 036402.

Howard, C. J., Hill, R. J., & Reichert, B. E. (1988). Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction. Acta Crystallographica Section B: Structural Science, 44(2), 116-120

Teufer, G. (1962). The crystal structure of tetragonal ZrO2. Acta Crystallographica, 15(11), 1187-1187.

Martin, U., Boysen, H., & Frey, F. (1993). Neutron powder investigation of tetragonal and cubic stabilized zirconia, TZP and CSZ, at temperatures up to 1400 K. Acta Crystallographica Section B: Structural Science, 49(3), 403-413.

Aldebert, P., & TRAVERSE, J. P. (1985). Structure and ionic mobility of zirconia at high temperature. Journal of the American Ceramic Society, 68(1), 34-40.

Martin, U., Boysen, H., & Frey, F. (1993). Neutron powder investigation of tetragonal and cubic stabilized zirconia, TZP and CSZ, at temperatures up to 1400 K. Acta Crystallographica Section B: Structural Science, 49(3), 403-413.

Verma P, Truhlar D. HLE16: A Local Kohn-Sham Gradient Approximation with Good Performance for Semiconductor Band Gaps and Molecular Excitation Energies. J. Phys. Chem. Lett. 2017;8:380–87. doi.org/10.1021/acs.jpclett.6b02757.

Maleki, F., & Pacchioni, G. (2020). Characterization of acid and basic sites on zirconia surfaces and nanoparticles by adsorbed probe molecules: A theoretical study. Topics in Catalysis, 63, 1717-1730.

Tsoga, A.; Nikolopoulos, P. Surface and grain-boundary energies in yttria-stabilized zirconia (YSZ-8 mol%). J. Mater. Sci. 1996, 31, 5409–5413. https://doi.org/10.1007/bf01159310.

Korhonen, S. T., Calatayud, M., & Krause, A. O. I. (2008). Stability of hydroxylated (111) and (101) surfaces of monoclinic zirconia: A combined study by DFT and infrared spectroscopy. The Journal of Physical Chemistry C, 112(16), 6469-6476.

Kim, G., Kwon, G., & Lee, H. (2021). The role of surface hydroxyl groups on a single-atomic Rh 1/ZrO 2 catalyst for direct methane oxidation. Chemical Communications, 57(13), 1671-1674.

Zhu, J., van Ommen, J. G., & Lefferts, L. (2006). Effect of surface OH groups on catalytic performance of yittrium-stabilized ZrO2 in partial oxidation of CH4 to syngas. Catalysis today, 117(1-3), 163-167.

Nematov, D. Influence of Iodine Doping on the Structural and Electronic Properties of CsSnBr3. Int. J. Appl. Phys. 2022, 7, 36–47.

Nematov, D.; Kholmurodov, K.; Yuldasheva, D.; Rakhmonov, K.; Khojakhonov, I. Ab-initio Study of Structural and Electronic Properties of Perovskite Nanocrystals of the CsSn[Br1−xIx]3 Family. HighTech Innov. J. 2022, 3, 140–150.

Davlatshoevich, N.D. Investigation Optical Properties of the Orthorhombic System CsSnBr3-xIx: Application for Solar Cells and Optoelectronic Devices. J. Hum. Earth Futur. 2021, 2, 404–411. https://doi.org/10.28991/hef-2021-02-04-08.

Davlatshoevich, N.D.; Ashur, K.; Saidali, B.A.; Kholmirzo, K.; Lyubchyk, A.; Ibrahim, M. Investigation of structural and optoe-lectronic properties of N-doped hexagonal phases of TiO2 (TiO2-xNx) nanoparticles with DFT realization: Optimization of the band gap and optical properties for visible-light absorption and photovoltaic applications. Biointerface Res. Appl. Chem. 2022, 12, 3836–3848.

Nematov, D.D.; Burhonzoda, A.S.; Khusenov, M.A.; Kholmurodov, K.T.; Yamamoto, T. First Principles Analysis of Crystal Structure, Electronic and Optical Properties of CsSnI3–xBrx Perovskite for Photoelectric Applications. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2021, 15, 532–536. https://doi.org/10.1134/s1027451021030149.

Nematov, D.D.; Kholmurodov, K.T.; Aliona, S.; Faizulloev, K.; Gnatovskaya, V.; Kudzoev, T. A DFT Study of Structure, Elec-tronic and Optical Properties of Se-Doped Kesterite Cu2ZnSnS4 (CZTSSe). Lett. Appl. NanoBioSci. 2022, 12, 67.

Nematov, D.; Makhsudov, B.; Kholmurodov, K.; Yarov, M. Optimization Optoelectronic Properties ZnxCd1-xTe System for Solar Cell Application: Theoretical and Experimental Study. Biointerface Res. Appl. Chem. 2023, 13, 90.

Nematov, D.; Burhonzoda, A.; Khusenov, M.; Kholmurodov, K.; Doroshkevych, A.; Doroshkevych, N.; Zelenyak, T.; Majumder, S.; Ibrahim, M. Molecular Dynamics Simulations of the DNA Radiation Damage and Conformation Behavior on a Zirconium Dioxide Surface. Egypt. J. Chem. 2019, 62, 12–14. https://doi.org/10.21608/ejchem.2019.12981.1811.

Nematov, D.D.; Burhonzoda, A.S.; Khusenov, M.A.; Kholmurodov, K.T.; Ibrahim, M.A. The Quantum-Chemistry Calculations of Electronic Structure of Boron Nitride Nanocrystals with Density Functional Theory Realization. Egypt. J. Chem. 2019, 62, 11–12. https://doi.org/10.21608/ejchem.2019.12879.1805.

Nizomov, Z.; Asozoda, M.; Nematov, D. Characteristics of Nanoparticles in Aqueous Solutions of Acetates and Sulfates of Single and Doubly Charged Cations. Arab. J. Sci. Eng. 2022, 48, 867–873. https://doi.org/10.1007/s13369-022-07128-2.

Dilshod, N.; Kholmirzo, K.; Aliona, S.; Kahramon, F.; Viktoriya, G.; Tamerlan, K. On the Optical Properties of the Cu2ZnSn[S1−xSex]4 System in the IR Range. Trends Sci. 2023, 20, 4058–4058. https://doi.org/10.48048/tis.2023.4058.

Danilenko, I.; Gorban, O.; Maksimchuk, P.; Viagin, O.; Malyukin, Y.; Gorban, S.; Volkova, G.; Glasunova, V.; Mendez-Medrano, M.G.; Colbeau-Justin, C.; et al. Photocatalytic activity of ZnO nanopowders: The role of production techniques in the formation of structural defects. Catal. Today 2019, 328, 99–104. https://doi.org/10.1016/j.cattod.2019.01.021.

S. S. Mydeen, M. Kottaisamy, and V. S. Vasantha*, “Photocatalytic Performances and Antibacterial Activities of Nano-Zno Derived By Cetrimide-Based Co-Precipitation Method by Varying Solvents,” International Journal of Innovative Technology and Exploring Engineering, vol. 9, no. 2. Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP, pp. 930–938, Dec. 30, 2019. doi: 10.35940/ijitee.b7145.129219. Available: http://dx.doi.org/10.35940/ijitee.B7145.129219.

“Construction of Simulation for Adsorption Process Visualization,” International Journal of Recent Technology and Engineering, vol. 8, no. 2S6. Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP, pp. 420–423, Sep. 16, 2019. doi: 10.35940/ijrte.b1079.0782s619. Available: http://dx.doi.org/10.35940/ijrte.B1079.0782S619

S. A. Bahadur et al., “Nanocrystalline Cuco2se4 Thin Film Counter Electrode for Dye-Sensitized Solar Cells,” International Journal of Engineering and Advanced Technology, vol. 9, no. 1s4. Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP, pp. 370–373, Dec. 30, 2019. doi: 10.35940/ijeat.a1184.1291s419. Available: http://dx.doi.org/10.35940/ijeat.A1184.1291S419

Most read articles by the same author(s)

1 2 3 > >>