Gas Turbine Performance Enhancement and Evaluation for Power Generation in the City of Karbala, Iraq

Main Article Content

Diwa James Enyia
Dane Osim-Asu, Email ID:
Paul Chibundu Uzomah
Stanley James-Diwa Enyia

Abstract

The performance of gas turbines is highly susceptible to environmental factors, particularly in arid and hot climates. The present study examines the direct impact of ambient temperature on the gas turbine's performance under the climatic conditions of Karbala city. An Excel proprietary software modeled using the law of energy and mass conservation was used to simulate real data collected from the Karbala power plant (gas turbine). The simulation result was found for the gas turbine power plant with steadily increasing compressor entry temperature (T1). The result show that for a 40K temperature rise from 300K-340K at the compressor inlet stage, net power gained a 13.34% increment; thermal efficiency gained a 13.33% increment and a reduction in the specific consumption of fuel (SFC) by 12% was noticed. The effect was acknowledged to be a resonating one rather than direct. Recommendations suggest that a pre-compressor cooling technology be developed and incorporated with a high efficiency pre-combustor heating technology for compressor reduction and SFC reduction. Best practice.

Downloads

Download data is not yet available.

Article Details

How to Cite
Gas Turbine Performance Enhancement and Evaluation for Power Generation in the City of Karbala, Iraq (Diwa James Enyia, Dane Osim-Asu, Email ID:, Paul Chibundu Uzomah, & Stanley James-Diwa Enyia , Trans.). (2024). International Journal of Emerging Science and Engineering (IJESE), 12(9), 26-33. https://doi.org/10.35940/ijese.J9956.12090824
Section
Articles

How to Cite

Gas Turbine Performance Enhancement and Evaluation for Power Generation in the City of Karbala, Iraq (Diwa James Enyia, Dane Osim-Asu, Email ID:, Paul Chibundu Uzomah, & Stanley James-Diwa Enyia , Trans.). (2024). International Journal of Emerging Science and Engineering (IJESE), 12(9), 26-33. https://doi.org/10.35940/ijese.J9956.12090824
Share |

References

Li, J., Ying, Y. (2018). A Method to Improve the Robustness of Gas Turbine Gas-Path Fault Diagnosis Against Sensor Faults. IEEE Transactions on Reliability, 67: 3–12. https://doi.org/10.1109/TR.2017.2695482

Yazdani, S., Salimipour, E., Moghaddam, M. S. (2020). A comparison between a natural gas power plant and a municipal solid waste incineration power plant based on an energy analysis. Journal of Cleaner Production, 274: 123158. https://doi.org/10.1016/j.jclepro.2020.123158

Liang, Y., Cai, L., Guan, Y., Liu, W., Xiang, Y., Li, J., He, T. (2020). Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat. Energy, 193: 116854. https://doi.org/10.1016/j.energy.2019.116854

Bao, J., Zhang, L., Song, C., Zhang, N., Guo, M., Zhang, X. (2019). Reduction of efficiency penalty for a natural gas combined cycle power plant with post-combustion CO2 capture: Integration of liquid natural gas cold energy. Energy Conversion and Management, 198: 111852. https://doi.org/10.1016/j.enconman.2019.111852

Matjanov, E. (2020). Gas turbine efficiency enhancement using absorption chiller. Case study for Tashkent CHP. Energy, 192: 116625, (2020). https://doi.org/10.1016/j.energy.2019.116625

Al-Ibrahim, A.M., Varnham, A. (2010). A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia. Applied Thermal Engineering, 30(14-15): 1879-1888.https://doi.org/10.1016/j.applthermaleng.2010.04.025 https://doi.org/10.1016/j.applthermaleng.2010.04.025

Baakeem, S.S., Orfi, J., Al-Ansary, H. (2018). Performance improvement of gas turbine power plants by utilizing turbine inlet air-cooling (TIAC) technologies in Riyadh, Saudi Arabia. Applied Thermal Engineering,138: 417-432. https://doi.org/10.1016/j.applthermaleng.2018.04.018

Omidvar, B. (2001). Gas turbine inlet air cooling system. The 3rd Annual Australian Gas Turbine Conference, Melbourne, Australia 2001 Dec.

Espanani, R., Ebrahimi, S.H., Ziaeimoghadam, H.R. (2013). Efficiency improvement methods of gas turbine. Energy and environmental Engineering, 1(2): 36-54. https://doi.org/10.13189/eee.2013.010202

Ukwuaba, S.I., Agberegha, O.L., Mohammed, B.A. (2020). Analysis and performance evaluation of gas turbine by incorporating a wetted evaporative media cooler. International Journal of Engineering and Advanced Technology (IJEAT), 8(2): 226-232.

Kadhim, H.J., Kadhim, T.J., Alhwayzee, M.H. (2020). Acomparative study of performance of Al-Khairat gas turbine power plant for different types of fuel. In IOP Conference Series: Materials Science and Engineering, 671(1): 012015. https://doi.org/10.1088/1757-899X/671/1/012015

Alhwayzee, M., Kadhim, H.J., Rashid, F.L. (2021). Aspen plus simulation for performance improving of Al-Khayrat power plant using heat recovery steam generation (HRSG) system. Journal of Mechanical Engineering Research and Developments, 44(4): 400-411.

Alhazmy, M.M., Jassim, R.K., Zaki, G.M. (2006). Performance enhancement of gas turbines by inlet air-cooling in hot and humid climates. International Journal of Energy Research, 30(10): 777-797.https://doi.org/10.1002/er.1184 https://doi.org/10.1002/er.1184

Sanjay, Mohapatra, A.K. (2014). Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance. Energy, 68:191-203. https://doi.org/10.1016/j.energy.2014.02.066

Orhorhoro, E.K., Orhorhoro, O.W. (2016). Simulation of air inlet cooling system of a gas turbine power plant. ELK Asia Pacific Journal of Applied Thermal Engineering,1(2).

Kim, K.H., Ko, H.J., Kim, K., Perez-Blanco, H. (2012). Analysis of water droplet evaporation in a gas turbine inlet fogging process. Applied Thermal Engineering, 33-34: 62-69 https://doi.org/10.1016/j.applthermaleng.2011.09.012

Sanaye, S., Tahani, M. (2010). Analysis of gas turbine operating parameters with inlet fogging and wet compression processes. Applied Thermal Engineering, 30(2-3): 234-244. https://doi.org/10.1016/j.applthermaleng.2009.08.011

Shukla, A.K., Sharma, A., Sharma, M., Mishra, S. (2018). Performance improvement of simple gas turbine cycle with vapor compression inlet air cooling. Materials Today: Proceedings, 5(9): 19172-19180.https://doi.org/10.1016/j.matpr.2018.06.272 https://doi.org/10.1016/j.matpr.2018.06.272

Ibrahim, T.K., Basrawi, F., Awad, O.I., Abdullah, A. N., Najafi, G., Mamat, R., Hagos, F.Y. (2017). Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115: 977-985.https://doi.org/10.1016/j.applthermaleng.2017.01.032 https://doi.org/10.1016/j.applthermaleng.2017.01.032

Rashid, F.L., Al-Jibory, M.W., Hussein, H.Q. (2017). Cooling enhancement in gas turbine blade using coated circular ribs with a new nanocomposite material. Patent (5092).

Al-Jibory, M. W., Rashid, F.L., Hussein, H.Q. (2018). Heat transfer augmentation in gas turbine blade rectangular passages using circular ribs with fins. Journal of University of Babylon for Engineering Sciences, 26(1):247-258.

Rashid, F.L., Azziz, H.N., Hussein, E.Q. (2018). Heat transfer enhancement in air cooled gas turbine blade using. Journal of Petroleum Research and Studies, 8(3):52-69. https://doi.org/10.52716/jprs.v8i3.230

Al-Jibory, M.W., Rashid, F.L., Talib, S.M. (2020). Review on cooling enhancement of different shape gas turbine ribbed blade with thermal barrier coating. International Journal of Scientific Research and Engineering Development, 3(1): 313-329.

Al-Jibory, M. W., Rashid, F.L., Hussein, H.Q. (2020). Review of heat transfer enhancement in air-cooled turbine blades. International Journal of Scientific & Technology Research, 9(4): 3123-3130. https://doi.org/10.1615/JEnhHeatTransf.2020033420

Hussein, H.Q., Al-Jibory, M.W., Rashid, F.L. (2020).Heat transfer enhancement of gas turbine blades using coated ribs with nanocomposite materials. Journal of Mechanical Engineering Research and Developments, 43(6): 9-22.

Barakat, S., Ramzy, A., Hamed, A.M., El-Emam, S.H. (2019). Augmentation of gas turbine performance using integrated EAHE and Fogging Inlet Air Cooling System. Energy, 189: 116133.https://doi.org/10.1016/j.energy.2019.116133 https://doi.org/10.1016/j.energy.2019.116133

David, W. M, Asfaw, B. (2017). Impact of Air Quality and Site Selection on Gas Turbine Engine Performance. J. Energy Resour. Technol. Feb 2018, 140(2): 020903 (7 pages) JERT-17-1049 https://doi.org/10.1115/1.4038118

Di W., Zhonghe H., Zhijian L., Han Z. (2019). Study on configuration optimization and economic feasibility analysis for combined cooling, heating and power system. Energy Conversion and Management Volume 190, 15 June 2019, Pages 91-104 https://doi.org/10.1016/j.enconman.2019.04.004

Gang X., Tianfeng Y., Huanlei L., Dong N., Mario L. F., Mingchun L., Zhongyang L., Kefa C., Mingjiang N. (2017). Recuperators for micro gas turbines: A review. Applied Energy Volume 197, 1 July 2017, Pages 83-99 https://doi.org/10.1016/j.apenergy.2017.03.095

Abazar V. A., Majid A. (2011). Economic optimization of shell and tube heat exchanger based on constructal theory. Energy Volume 36, Issue 2, February 2011, Pages 1087-1096 https://doi.org/10.1016/j.energy.2010.11.041

Peyman M., Sadegh S. (2020) A novel economic analysis and multi-objective optimization of a 200-kW recuperated micro gas turbine considering cycle thermal efficiency and discounted payback period. Applied Thermal Engineering Volume 166, 5 February 2020, 114644 https://doi.org/10.1016/j.applthermaleng.2019.114644

Peyman M., Sadegh S., Hossein K., Hamid H. G. (2018). A comprehensive thermo-economic analysis, optimization and ranking of different microturbine plate-fin recuperators designs employing similar and dissimilar fins on hot and cold sides with NSGA-II algorithm and DEA model. Applied Thermal Engineering. Volume 130, 5 February 2018, Pages 1090-1104 https://doi.org/10.1016/j.applthermaleng.2017.11.087

Sadeghzadeh H., Ehyaei M. A., Rosen M. A. (2015). Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms. Energy Conversion and Management Volume 93, 15 March 2015, Pages 84-91 https://doi.org/10.1016/j.enconman.2015.01.007

Kousuke N., Toshimi T., Shinichi K. (2005). Regenerative steam-injection gas-turbine systems. Applied Energy Volume 81, Issue 3, July 2005, Pages 231-246 https://doi.org/10.1016/j.apenergy.2004.08.002

Campbell J. F., Rohsenow W. M. (1992). Gas turbine regenerators: A method for selecting the optimum plate-finned surface pair for minimum core volume. International Journal of Heat and Mass Transfer Volume 35, Issue 12, December 1992, Pages 3441-3450 https://doi.org/10.1016/0017-9310(92)90230-P

Stasiek J. A. (1998). Experimental studies of heat transfer and fluid flow across corrugated-undulated heat exchanger surfaces. International Journal of Heat and Mass Transfer Volume 41, Issues 6–7, March–April 1998, Pages 899-914 https://doi.org/10.1016/S0017-9310(97)00168-3

Qiu-wang W., Min Z., Ting M., Xueping D., Jianfeng Y. (2014). Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization. Applied Energy Volume 135, 15 December 2014, Pages 748-777 https://doi.org/10.1016/j.apenergy.2014.05.004

Ting M., Lin-xiu D., Ning S., Min Z., Bengt S., Qiu-wang W. (2016). Experimental and numerical study on heat transfer and pressure drop performance of Cross-Wavy primary surface channel. Energy Conversion and Management. Volume 125, 1 October 2016, Pages 80-90 https://doi.org/10.1016/j.enconman.2016.06.055

Hui L., Zhengping Z., Huan L., Yiming C., Chao F. (2022). Thermal performance of a microchannel primary surface recuperator for portable microturbine generators: Design and experimental study. Applied Thermal Engineering Volume 206, April 2022, 118103 https://doi.org/10.1016/j.applthermaleng.2022.118103

Akbarzadeh M., Rashidi S., Bovand M., Ellahi R. (2016). A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel. Journal of Molecular Liquids. Volume 220, August 2016, Pages 1-13 https://doi.org/10.1016/j.molliq.2016.04.058

Esfahani, J. A., Akbarzadeh, M., Rashidi, S., Rosen, M. A., Ellah, R. (2017). Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat. International Journal of Heat and Mass Transfer Volume 109. June 2017, Pages 1162-1171 https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.006

S. Rashidi M. Akbarzadeh R. Masoodi E.M. Languri. (2017). Thermal-hydraulic and entropy generation analysis for turbulent flow inside a corrugated channel. International Journal of Heat and Mass Transfer Volume 109. June 2017, Pages 812-823 https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.033

Xusheng S., Yongwei W., Xiulan H., Keyong C. (2019). Influence of geometrical parameters on thermal-hydraulic performance and entropy generation in cross-wavy channels with variable air properties. Applied Thermal Engineering Volume 157. 5 July 2019, 113714 https://doi.org/10.1016/j.applthermaleng.2019.113714

Xusheng S., Yongwei W., Xiulan H., Keyong C. (2020). Influence of structure parameters on entropy generation performance in cross wavy channels with fluid-solid coupled heat transfer. Applied Thermal Engineering Volume 181. 25 November 2020, 115882 https://doi.org/10.1016/j.applthermaleng.2020.115882

Yanzhao Y., Fu C., Jianyang Y., Yanping S., Handuo H., Dongqiang X., Huadong J. (2022). Numerical study on heat transfer characteristics of heat exchange cell in an annular cross-wavy primary surface recuperator (annular CWPSR). Applied Thermal Engineering Volume 216. 5 November 2022, 119062 https://doi.org/10.1016/j.applthermaleng.2022.119062

Himanshu M. J. & Ralph L. W. (1987). Heat transfer and friction in the offset stripfin heat exchangerTransfert de chaleur et frottement dans un exchangeur de chaleur a bande-ailette offset. International Journal of Heat and Mass Transfer, Volume 30, Issue 1. January 1987, Pages 69-84 https://doi.org/10.1016/0017-9310(87)90061-5

Rui S., Mengmeng C., Jianjun L. (2017). A correlation for heat transfer and flow friction characteristics of the offset strip fin heat exchanger. International Journal of Heat and Mass Transfer, Volume 115, Part B. December 2017, Pages 695-705. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.054

Anushraj B, Winowlin Jappes J T, Adam Khan M, Dillibabu V and Brintha N C, Comprehensive report on Materials for Gas Turbine Engine Components. (2019). In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 2S2, pp. 155–158). https://doi.org/10.35940/ijitee.b1036.1292s219

Dubey, K. K., & Mishra, R. S. (2019). Statistical Analysis for Parametric Optimization of Gas Turbine-Steam Turbine Combined Power Cycle with Different Natural Gas Combustion. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 4, pp. 4563–4570). https://doi.org/10.35940/ijrte.d8507.118419

chitransh, A., & gupta, Dr. S. (2021). Role of Power Electronics Devices in Grid Integration with Renewable Energy Source (Wind) and Challenges. In Indian Journal of Production and Thermal Engineering (Vol. 1, Issue 2, pp. 21–25). https://doi.org/10.54105/ijpte.b2014.061221