Emerging Technologies to Transform Conventional Domains into Smart Industrial IoT: A Comprehensive Review
Main Article Content
Abstract
LoRaWAN (Long Range Wide Area Network) contributes as a key technology in Industrial Internet of Things (IIoT). LoRaWAN receives consistent industrial attention due to its far-reaching long-range communication capability, low power consumption, and easy-to-adapt architecture, which requires minimal infrastructure costs. This paper provides more insightful information about LoRaWAN in IIoT, illustrating how LoRaWAN optimises operational efficiency, safety, remote data collection, and sustainability through its dynamic features in industrial settings. Additionally, this paper explores the integration of LoRaWAN with emerging technologies, including artificial intelligence, machine learning, edge computing, and blockchain. While this paper emphasizes the potential of promising trends in the IIoT ecosystem, it also explores relevant challenges like scalability, security, and interoperability that demand the need for continued research. The comparative analysis of recent research works highlights key technical parameters. It is helpful to critically examine the trade-offs between performance, scalability, and security, and address them with novel solutions. In summary, this paper offers valuable insights for industry professionals and researchers seeking to leverage LoRaWAN to advance the Industrial Internet of Things (IIoT).
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
G. Beier, S. Niehoff, and B. Xue, “More sustainability in industry through industrial Internet of Things?” Appl. Sci., vol. 8, p. 219, 2018. DOI: http://doi.org/10.3390/app8020219
P. Corke, P. Valencia, P. Sikka, T. Wark, and L. Overs, “Long-duration solar-powered wireless sensor networks,” in Proc. ACM SenSys, 2007, pp. 1278972–1278980. DOI: http://doi.org/10.1145/1278972.1278980
A. Seferagić, J. Famaey, E. De Poorter, and J. Hoebeke, “Survey on wireless technology trade-offs for the industrial Internet of Things,” Sensors, vol. 20, p. 488, 2020. DOI: http://doi.org/10.3390/s20020488
M. Swain, M. F. Hashmi, R. Singh, and A. W. Hashmi, “A cost-effective LoRa-based customized device for agriculture field monitoring and precision farming on IoT platform,” Int. J. Commun. Syst., vol. 33, p. e4632, 2020. DOI: http://doi.org/10.1002/dac.4632
I. B. F. Almeida, M. Chafii, A. Nimr, and G. Fettweis, “Alternative chirp spread spectrum techniques for LPWANs,” IEEE Trans. Green Commun. Netw., vol. 5, 2021. DOI: http://doi.org/10.1109/tgcn.2021.3085477
A. Augustin, J. Yi, T. Clausen, and W. Townsley, “A study of LoRa: Long range & low power networks for the Internet of Things,” Sensors, vol. 16, p. 1466, 2016. DOI: http://doi.org/10.3390/s16091466
H. S. Dhillon, H. Huang, H. Viswanathan, and R. A. Valenzuela, “Power-efficient system design for cellular-based machine-to-machine communications,” IEEE Trans. Wireless Commun., vol. 12, 2013. DOI: http://doi.org/10.1109/twc.2013.100713.130025
A. Sørensen et al., “Modelling and experimental validation for battery lifetime estimation in NB-IoT and LTE-M,” IEEE Internet Things J., vol. 9, 2022. DOI: http://doi.org/10.1109/jiot.2022.3152173
T. Wirth, M. Mehlhose, J. Pilz, B. Holfeld, and D. Wieruch, “5G new radio and ultra-low latency applications: A PHY implementation perspective,” in Proc. IEEE ACSSC, 2016, p. 7869608. DOI: http://doi.org/10.1109/acssc.2016.7869608
R. S. Sinha, Y. Wei, and S.-H. Hwang, “A survey on LPWA technology: LoRa and NB-IoT,” ICT Express, vol. 3, pp. 129–134, 2017.
DOI: http://doi.org/10.1016/j.icte.2017.03.004
A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A study of LoRa: Long range & low power networks for the Internet of Things,” Sensors, vol. 16, p. 1466, 2016. Available: DOI: https://doi.org/10.3390/s16091466
D. Bankov, P. Levchenko, A. Lyakhov, and E. Khorov, “On the limits and best practice for NB-Fi: A new LPWAN technology,” IEEE Internet Things J., vol. 10, 2023. DOI: http://doi.org/10.1109/jiot.2023.3245727
J. Courjault, B. Vrigneau, O. Berder, and M. R. Bhatnagar, “How robust is a LoRa communication against impulsive noise?” in Proc. IEEE PIMRC, Aug. 2020. DOI: http://doi.org/10.1109/pimrc48278.2020.9217348
G. Cena, S. Scanzio, and A. Valenzano, “Improving effectiveness of seamless redundancy in real industrial Wi-Fi networks,” IEEE Trans. Ind. Informat., Oct. 2017. DOI: http://doi.org/10.1109/TII.2017.2759788
L. C. Ibáñez, B. Mir, R. Vidal, and C. Gómez, “Modelling the energy performance of LoRaWAN,” Sensors, vol. 17, p. 2364, 2017. DOI: http://doi.org/10.3390/s17102364
N. Diksha and A. Shubham, “Backdoor intrusion in wireless networks—Problems and solutions,” in Proc. IEEE ICCT, Nov. 2006. DOI: http://doi.org/10.1109/icct.2006.341662
P. de Moraes and A. F. da Conceição, “A systematic review of security in the LoRaWAN network protocol,” Cornell Univ., 2021. DOI: http://doi.org/10.48550/arxiv.2105.00384
K. J. Kumpf, “End-to-end communications security,” SPIE Proc., Apr. 2006. Accessed: Nov. 14, 2024. DOI: http://doi.org/10.1117/12.663453
J. Liu, C. Yuan, Y. Lai, and H. Qin, “Protection of sensitive data in industrial internet based on three-layer local/fog/cloud storage,” J. Sens. Actuator Netw., 2020. DOI: http://doi.org/10.1155/2020/2017930
Y. Ran, X. Zhou, P. Lin, Y. Wen, and R. Deng, “A survey of predictive maintenance: Systems, purposes, and approaches,” Cornell Univ., 2019. DOI: http://doi.org/10.48550/arxiv.1912.07383
G. S. Sampaio, A. R. A. V. Filho, L. S. Silva, and L. A. Silva, “Prediction of motor failure time using an artificial neural network,” Sensors, vol. 19, p. 4342, 2019. DOI: http://doi.org/10.3390/s19194342
H. Sun, L. Chen, C. Yao, C. Li, and Y. Zhou, “Review on key technologies of wireless monitoring of pump group based on the internet of things,” in Proc. IEEE PHM-Qingdao, Oct. 2019. DOI: http://doi.org/10.1109/phm-qingdao46334.2019.8942863
K. Tseng, M.-Y. Chung, L. Chen, and P.-Y. Chang, “Green smart campus monitoring and detection using LoRa,” Sensors, vol. 21, p. 6582, 2021. DOI: http://doi.org/10.3390/s21196582
L. Santoro, M. Nardello, D. Brunelli, and D. Fontanelli, “Scale up to Infinity: The UWB Indoor Global Positioning System,” in Proc. ROSE 2021, 2021. DOI: http://doi.org/10.1109/rose52750.2021.9611770.
V. Sarangan, J. Kunthong, X. Cai, S. Bukkapatnam, R. Komanduri, and J. L. Volakis, “A Low-Cost, Small-
Footprint Wireless Sensor for Container Integrity Monitoring,” in Proc. IEEE SAHCN, 2009. DOI: http://doi.org/10.1109/sahcn.2009.5168903
Y. Gao, Y. Zhou, and J. Wang, “Application Research of Logistics Tracking System Based on RFID,” in Proc. IET Conf. Wireless Commun., 2007. Application research of logistics tracking system based on RFID | IET Conference on Wireless, Mobile and Sensor Networks 2007 (CCWMSN07)
M. Erol-Kantarci and T. S. Hussein, “Demand Management and Wireless Sensor Networks in the Smart Grid,” InTech eBooks, 2011. DOI: http://doi.org/10.5772/17297
P. Pálenský, “Electric Load Management and Information Technology,” in Proc. AFRICON, 2009. DOI: http://doi.org/10.1109/afrcon.2009.5308094
A. Sh. M. Al-Obaidi and T. Nguyen-Huynh, “Renewable vs. Conventional Energy: Which Wins the Race to Sustainable Development?” IOP Conf. Ser.. Mater. Sci. Eng., vol. 434, p. 012310, 2018. DOI: http://doi.org/10.1088/1757-899x/434/1/012310
J. Teizer, S. Hill, M. Bal, and R. Abrishambaf, “Construction Resource Efficiency Improvement by Long Range Wide Area Network Tracking and Monitoring,” Autom. Constr., vol. 114, p. 103245, 2020. DOI: http://doi.org/10.1016/j.autcon.2020.103245
A. Simó, C. Bărbulescu, S. Kilyeni, and C. Dragos, “LoRa-Based Energy Efficiency Improvement in Manufacturing Processes,” in Proc. ICCCC, 2018. DOI: http://doi.org/10.1109/icccc.2018.8390453
“5G for Industrial Internet of Things (IIoT): Capabilities, Features, and Potential,” 5G-ACIA Whitepaper, 2023. Available online: (accessed on 15 November 2024). https://5g-acia.org/whitepapers/5g-for-industrial-internet-of-things/
I. V. Ngonadi and S. Ajiroghene, “Remote Pipeline Monitoring Security System,” CSEIT J., vol. 7, p. 631, 2021.
DOI: http://doi.org/10.32628/cseit217631
J. Daily and J. B. Peterson, “Predictive Maintenance: How Big Data Analysis Can Improve Maintenance,” Springer eBooks, vol. 267, 2016. DOI: http://doi.org/10.1007/978-3-319-46155-7_18
D. K. Shannon, D. E. Clay, and K. A. Sudduth, “An Introduction to Precision Agriculture,” in ASSA, CSSA, and SSSA Book Series, 2018, p. 1. DOI: http://doi.org/10.2134/precisionagbasics.2016.0084
J. Jin, Y. Ma, Y. Zhang, and Q. Huang, “Design and Implementation of an Agricultural IoT Based on LoRa,” MATEC Web Conf., vol. 189, 2018. DOI: http://doi.org/10.1051/matecconf/201818904011
R. Matenge, “Soil Moisture-Based Irrigation Test in a Remotely Monitored Automated System,” Int. J. Adv. Res., vol. 1, 2017.
DOI: http://doi.org/10.21474/ijar01/5932
P. Cepuder and R. Nolz, “Irrigation Management using Soil Moisture Sensor Technologies,” Open Geosci., vol. 1, 2007.
DOI: http://doi.org/10.2478/v10025-000-0007-0
S. Chitra Suseendran, K. B. Nanda, J. Andrew, and M. S. B. Praba, “Smart Street Lighting System,” in Proc. 3rd Int. Conf. Commun. Electron. Syst. (ICCES), 2018, p. 1. DOI: http://doi.org/10.1109/CESYS.2018.8723949
M. Kuusik, T. Varjas, and A. Rosin, “Case Study of Smart City Lighting System with Motion Detector and Remote Control,” in Proc. IEEE Int. Energy Conf. (ENERGYCON), 2016, p. 1. DOI: http://doi.org/10.1109/energycon.2016.7513906
T. Bányai, P. Tamás, B. Illés, Ž. Stankevičiūtė, and Á. Bányai, “Optimization of Municipal Waste Collection Routing: Impact of Industry 4.0 Technologies on Environmental Awareness and Sustainability,” Int. J. Environ. Res. Public Health, vol. 16, p. 634, 2019. DOI: http://doi.org/10.3390/ijerph16040634
A. Basu, R. Paul, and P. K. Jana, “LoRa (Long-Range) High-Density Sensors for Internet of Things,” J. Sens., vol. 2019, p. 3502987, 2019. DOI: http://doi.org/10.1155/2019/3502987
M. F. Qureshi and M. Kamal, “A Survey on Evolved LoRa-Based Communication Technologies for IoT,” Int. J. Next-Gener. Internet, vol. 12, p. 112, 2022. https://www.researchgate.net/publication/366695732
Y. Miao, Y. Li, and G. Wang, “A Survey of LoRaWAN for IoT: From Technology to Application,” Sensors, vol. 18, p. 3995, 2018.
DOI: http://doi.org/10.3390/s18113995
J. Xu, X. Zhang, and P. Chen, “A Scalable and Energy-Efficient LoRaWAN-Based Geofencing Solution,” IEEE Internet Things J., vol. 9, pp. 2889–10486905, 2024. DOI: http://dx.doi.org/10.1109/ACCESS.2024.3383778
A. Aboshosha, A. Haggag, N. George, and H. A. Hamad, “IoT-Based Data-Driven Predictive Maintenance Relying on Fuzzy System and Artificial Neural Networks,” Sci. Rep.., vol. 13, 2023. DOI: http://doi.org/10.1038/s41598-023-38887-z
P. Ferrari, E. Sisinni, D. Brandão, and M. S. Rocha, “Evaluation of Communication Latency in Industrial IoT Applications,” in Proc. IEEE Int. Workshop Metrol. Ind. 4.0 IoT (IWMN), 2017, p. 1. DOI: http://doi.org/10.1109/iwmn.2017.8078359
B. Soret et al., “Learning, Computing, and Trustworthiness in Intelligent IoT Environments: Performance-Energy Tradeoffs,” IEEE Trans. Green Commun. Netw., vol. 1, 2021. DOI: http://doi.org/10.1109/tgcn.2021.3138792
M. S. Philip and P. Singh, “Review of Energy Harvesting in LoRa-Based Wireless Sensor Network,” in Proc. IEEE Int. Conf. Adv. Comput. Commun. Syst. (ICACCS), 2020, p. 1. DOI: http://doi.org/10.1109/icacccn51052.2020.9362892
G. Fiorentino, C. Occhipinti, A. Corsi, E. P. Moro, J. Davies, and A. Duke, “Blockchain: Enabling Trust on the Internet of Things,” The Internet of Things, vol. 1, p. 141, 2020. DOI: http://doi.org/10.1002/9781119545293.ch11
S. Marksteiner and H. Vallant, “Towards a Secure Smart Grid Storage Communications Gateway,” in Proc. Int. Conf. Signals, Circuits, Syst. (SCS), 2017, p. 1. DOI: http://doi.org/10.1109/scsp.2017.7973855
F. Marlind and İ. Butun, “Activation of LoRaWAN End Devices by Using Public Key Cryptography,” in Proc. IEEE Int. Conf. Comput. Commun. Syst. (CSNet), 2020, p. 1. DOI: http://doi.org/10.1109/csnet50428.2020.9265530