A Systematic Survey on the Application of Artificial Intelligence (ai) Baseline Networks on Grid Computing Techniques - Challenges, Novelty and Prospects

Main Article Content

Fidelis Nfwan Gonten
Jimmy Nerat Jakawa
Datti Useni Emmanuel
Dakur Atiku Pandok
Ponfa Canfa Maikano

Abstract

A smart grid is a contemporary electrical system that supports two-way communication and utilizes the concept of demand response. To increase the smart grid's dependability and enhance the consistency, efficiency, and efficiency of the electrical supply, stability prediction is required. The true test for smart grid system designers and specialists will therefore be the increase of renewable energy. To integrate the electric utility infrastructure into the advanced communication era of today, both in terms of function and architecture, this program has made great strides toward modernizing and expanding it. The study reviews how a smart grid applied different deep learning techniques and how renewable energy can be integrated into a system where grid control is essential for energy management. The article discusses the idea of a smart grid and how reliable it is when renewable energy sources are present. Globally, a change in electric energy is needed to reduce greenhouse gas emissions, prevent global warming, reduce pollution, and boost energy security.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Fidelis Nfwan Gonten, Jimmy Nerat Jakawa, Datti Useni Emmanuel, Dakur Atiku Pandok, and Ponfa Canfa Maikano, “A Systematic Survey on the Application of Artificial Intelligence (ai) Baseline Networks on Grid Computing Techniques - Challenges, Novelty and Prospects”, IJSCE, vol. 14, no. 4, pp. 27–32, Sep. 2024, doi: 10.35940/ijsce.D3643.14040924.
Section
Articles

How to Cite

[1]
Fidelis Nfwan Gonten, Jimmy Nerat Jakawa, Datti Useni Emmanuel, Dakur Atiku Pandok, and Ponfa Canfa Maikano, “A Systematic Survey on the Application of Artificial Intelligence (ai) Baseline Networks on Grid Computing Techniques - Challenges, Novelty and Prospects”, IJSCE, vol. 14, no. 4, pp. 27–32, Sep. 2024, doi: 10.35940/ijsce.D3643.14040924.

References

Abdel-Nasser, M., & Mahmoud, K. (2019). Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural computing and applications, 31, 2727-2740. https://doi.org/10.1007/s00521-017-3225-z

Ali, S. S., & Choi, B. J. (2020). State-of-the-art artificial intelligence techniques for distributed smart grids: A review. Electronics, 9(6), 1030. https://doi.org/10.3390/electronics9061030

D’Oca, S., Corgnati, S. P., & Buso, T. (2014). Smart meters and energy savings in Italy: Determining the effectiveness of persuasive communication in dwellings. Energy Research & Social Science, 3, 131-142. https://doi.org/10.1016/j.erss.2014.07.015

Da Silva, F. L., Nishida, C. E., Roijers, D. M., & Costa, A. H. R. (2019). Coordination of electric vehicle charging through multiagent reinforcement learning. IEEE Transactions on Smart Grid, 11(3), 2347-2356. https://doi.org/10.1109/TSG.2019.2952331

Dogaru, D. I., & Dumitrache, I. (2019a). Cyber attacks of a power grid analysis using a deep neural network approach. Journal of Control Engineering and Applied Informatics, 21(1), 42-50.

Dogaru, D. I., & Dumitrache, I. (2019b). Cyber security of smart grids in the context of big data and machine learning. 2019 22nd International Conference on Control Systems and Computer Science (CSCS), https://doi.org/10.1109/CSCS.2019.00018

Erol-Kantarci, M., & Mouftah, H. T. (2013). Smart grid forensic science: applications, challenges, and open issues. IEEE Communications Magazine, 51(1), 68-74. https://doi.org/10.1109/MCOM.2013.6400441

Foruzan, E., Soh, L.-K., & Asgarpoor, S. (2018). Reinforcement learning approach for optimal distributed energy management in a microgrid. IEEE Transactions on Power Systems, 33(5), 5749-5758. https://doi.org/10.1109/TPWRS.2018.2823641

Goel, S., Hong, Y., Papakonstantinou, V., Kloza, D., Goel, S., & Hong, Y. (2015). Security challenges in smart grid implementation. Smart grid security, 1-39. https://doi.org/10.1007/978-1-4471-6663-4_1

Jiang, H., Zhang, J. J., Gao, W., & Wu, Z. (2014). Fault detection, identification, and location in smart grid based on data-driven computational methods. IEEE Transactions on Smart Grid, 5(6), 2947-2956. https://doi.org/10.1109/TSG.2014.2330624

Karimipour, H., Dehghantanha, A., Parizi, R. M., Choo, K.-K. R., & Leung, H. (2019). A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids. Ieee Access, 7, 80778-80788. https://doi.org/10.1109/ACCESS.2019.2920326

Kumar, N. M., Chand, A. A., Malvoni, M., Prasad, K. A., Mamun, K. A., Islam, F., & Chopra, S. S. (2020). Distributed energy resources and the application of AI, IoT, and blockchain in smart grids. Energies, 13(21), 5739. https://doi.org/10.3390/en13215739

Kuzlu, M., Cali, U., Sharma, V., & Güler, Ö. (2020). Gaining insight into solar photovoltaic power generation forecasting utilizing explainable artificial intelligence tools. IEEE Access, 8, 187814-187823. https://doi.org/10.1109/ACCESS.2020.3031477

Lee, J., Wang, W., Harrou, F., & Sun, Y. (2020). Wind power prediction using ensemble learning-based models. IEEE Access, 8, 61517-61527. https://doi.org/10.1109/ACCESS.2020.2983234

Li, L., Ota, K., & Dong, M. (2017). Everything is the image: CNN-based short-term electrical load forecasting for smart grid. 2017 14th International Symposium on Pervasive Systems, algorithms, and Networks & 2017 11th International Conference on the Frontier of Computer Science and Technology & 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC), https://doi.org/10.1109/ISPAN-FCST-ISCC.2017.78

Lin, L., Guan, X., Peng, Y., Wang, N., Maharjan, S., & Ohtsuki, T. (2020). Deep reinforcement learning for economic dispatch of a virtual power plant in the internet of energy. IEEE Internet of Things Journal, 7(7), 6288-6301. https://doi.org/10.1109/JIOT.2020.2966232

Lu, Z., Lu, X., Wang, W., & Wang, C. (2010). Review and evaluation of security threats on the communication networks in the smart grid. 2010-Milcom 2010 Military Communications Conference, https://doi.org/10.1109/MILCOM.2010.5679551

McLaughlin, S., Podkuiko, D., & McDaniel, P. (2010). Energy theft in the advanced metering infrastructure. Critical Information Infrastructures Security: 4th International Workshop, CRITIS 2009, Bonn, Germany, September 30-October 2, 2009. Revised Papers 4, https://doi.org/10.1007/978-3-642-14379-3_15

Mendel, J. (2017). Smart grid cyber security challenges: Overview and classification. e-mentor, 68(1), 55-66. https://doi.org/10.15219/em68.1282

Najafi, S., Shafie‐khah, M., Siano, P., Wei, W., & Catalão, J. P. (2019). Reinforcement learning method for plug‐in electric vehicle bidding. IET Smart Grid, 2(4), 529-536. https://doi.org/10.1049/iet-stg.2018.0297

Nallapaneni, M. K., Chand, A. A., Malvoni, M., Prasad, K. A., Mamun, K. A., Islam, F., & Chopra, S. S. (2020). Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids. Energies, 13(21), 5739. https://doi.org/10.3390/en13215739

Omitaomu, O. A., & Niu, H. (2021). Artificial intelligence techniques in smart grid: A survey. Smart Cities, 4(2), 548-568. https://doi.org/10.3390/smartcities4020029

Pearson, I. L. (2011). Smart grid cyber security for Europe. Energy Policy, 39(9), 5211-5218. https://doi.org/10.1016/j.enpol.2011.05.043

Saboori, H., Mohammadi, M., & Taghe, R. (2011). Virtual power plant (VPP), definition, concept, components and types. 2011 Asia-Pacific Power and Energy Engineering Conference, https://doi.org/10.1109/APPEEC.2011.5749026

Sagebiel, J., Müller, J. R., & Rommel, J. (2014). Are consumers willing to pay more for electricity from cooperatives? Results from an online Choice Experiment in Germany. Energy Research & Social Science, 2, 90-101. https://doi.org/10.1016/j.erss.2014.04.003

Saputra, Y. M., Hoang, D. T., Nguyen, D. N., Dutkiewicz, E., Mueck, M. D., & Srikanteswara, S. (2019). Energy demand prediction with federated learning for electric vehicle networks. 2019 IEEE Global Communications Conference (GLOBECOM), https://doi.org/10.1109/GLOBECOM38437.2019.9013587

Veldman, E., Geldtmeijer, D. A., Knigge, J. D., & Han Slootweg, J. (2010). Smart grids put into practice: Technological and regulatory aspects. Competition and regulation in Network Industries, 11(3), 287-306. https://doi.org/10.1177/178359171001100303

Wan, Z., Li, H., He, H., & Prokhorov, D. (2018). Model-free real-time EV charging scheduling based on deep reinforcement learning. IEEE Transactions on Smart Grid, 10(5), 5246-5257. https://doi.org/10.1109/TSG.2018.2879572

Wang, Z., Ogbodo, M., Huang, H., Qiu, C., Hisada, M., & Abdallah, A. B. (2020). AEBIS: AI-enabled blockchain-based electric vehicle integration system for power management in a smart grid platform. IEEE Access, 8, 226409-226421. https://doi.org/10.1109/ACCESS.2020.3044612

Wei, L., Gao, D., & Luo, C. (2018). False data injection attacks detection with deep belief networks in smart grid. 2018 Chinese Automation Congress (CAC), https://doi.org/10.1109/CAC.2018.8623514

Xu, X., Jia, Y., Xu, Y., Xu, Z., Chai, S., & Lai, C. S. (2020). A multi-agent reinforcement learning-based data-driven method for home energy management. IEEE Transactions on Smart Grid, 11(4), 3201-3211. https://doi.org/10.1109/TSG.2020.2971427

Xu, Y., Ahokangas, P., Louis, J.-N., & Pongrácz, E. (2019). Electricity market empowered by artificial intelligence: A platform approach. Energies, 12(21), 4128. https://doi.org/10.3390/en12214128

Zhang, C., Li, R., Shi, H., & Li, F. (2020). Deep learning for day‐ahead electricity price forecasting. IET Smart Grid, 3(4), 462-469. https://doi.org/10.1049/iet-stg.2019.0258

Zhang, D., Han, X., & Deng, C. (2018). Review on the research and practice of deep learning and reinforcement learning in smart grids. CSEE Journal of Power and Energy Systems, 4(3), 362-370. https://doi.org/10.17775/CSEEJPES.2018.00520

Zhang, L., Wang, G., & Giannakis, G. B. (2019). Real-time power system state estimation and forecasting via deep unrolled neural networks. IEEE Transactions on Signal Processing, 67(15), 4069-4077. https://doi.org/10.1109/TSP.2019.2926023

Sharma, T., & Sharma, R. (2024). Smart Grid Monitoring: Enhancing Reliability and Efficiency in Energy Distribution. In Indian Journal of Data Communication and Networking (Vol. 4, Issue 2, pp. 1–4). https://doi.org/10.54105/ijdcn.d7954.04020224

Mathew, A. R. (2019). Cyber-Infrastructure Connections and Smart Gird Security. In International Journal of Engineering and Advanced Technology (Vol. 8, Issue 6, pp. 2285–2287). https://doi.org/10.35940/ijeat.f8681.088619

Prabhakaran, Prof. R., & Asha, Dr. S. (2019). Enhancing Cyber Security in Power Sector using Machine Learning. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 9, pp. 3382–3386). https://doi.org/10.35940/ijitee.i7860.078919

Most read articles by the same author(s)

1 2 3 4 > >>