The Impact of GHG Emissions on Human Health and its Environment using XAI

Main Article Content

S.Ziweritin
I.D. Waheed

Abstract

Explainable AI(XAI) is a revolutionary concept in artificial intelligence that supports professionals in creating trust between people in the decisions of learning models. Greenhouse gases created in the atmosphere is driving our weather to become more irregular and intense. This endangers human health, affects crops and plants. XAI techniques remain popular, but they cannot disclose system behavior in a way that promotes analysis. Predicting GHG emissions and their impact on human health is an important aspect of monitoring emission rates by industries and other sectors. However, a handful of investigations have being used to examine the collective effect of industries such as construction, transportation, CO2, and others on emission patterns. This research tackles a knowledge vacuum by offering an explainable machine learning model. This framework employed a random forest classifier combined with two different explainable AI methodologies to give insights into the viability of the proposed learning model. The goal is to use XAI in determining the impact of GHG emissions on humans and its environment. A quantitative survey was carried out to investigate the possibilities of determining GHG emission rates more explainable. We created a random forest model, trained on GHG emission data using SHAP and LIME techniques. This was helpful in providing local and global explanations on model sample order by similarity, output value, and original sample ranking. The model resulted in high accuracy and enhanced interpretability with XAI, allowing decision makers comprehend what the AI system truly tells us. LIME exceeded SHAP in terms of comprehension, and satisfaction. In terms of trustworthiness, SHAP surpassed LIME.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
S.Ziweritin and I.D. Waheed , Trans., “The Impact of GHG Emissions on Human Health and its Environment using XAI”, IJRTE, vol. 13, no. 3, pp. 7–14, Sep. 2024, doi: 10.35940/ijrte.C8140.13030924.
Section
Articles

How to Cite

[1]
S.Ziweritin and I.D. Waheed , Trans., “The Impact of GHG Emissions on Human Health and its Environment using XAI”, IJRTE, vol. 13, no. 3, pp. 7–14, Sep. 2024, doi: 10.35940/ijrte.C8140.13030924.
Share |

References

Levasseur, A., Mercies-Blais, S., Prairie, Y. T., Treblay, A. and Turpin, A.(2021) Improving the accuracy of electricity carbon footprint: Estimation of hydroelectric reservoir greenhouse gas emissions, Renewable and Sustainable Energy Reviews, (vol.136, pp.1-20). : http://www.elsevier.com/locate/rser https://doi.org/10.1016/j.rser.2020.110433

Wang, J. Q., Du, Y., Wang, J. (2020) LSTM based long-term energy consumption prediction with periodicity.” Energy, (vol.197, pp.117197) https://doi.org/10.1016/j.energy.2020.117197

Thiebes, S., Lins, S., & Sunyaev, A. (2021). Trustworthy artificial intelligence. Electronic Markets, (vol.31, issue.2, pp.447–464). https://doi.org/10.1007/s12525-020-00441-4

Strohm, L., Hehakaya, C., Ranschaert, E. R., Boon, W. P., & Moors, E. H. (2020). Implementation of artificial intelligence (AI) applications in radiology: hindering and facilitating factors. European radiology, (vol.30, pp.5525–5532). https://doi.org/10.1007/s00330-020-06946-y

Shin, D. (2021). The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI. International Journal of Human-Computer Studies, 146, Article 102551. https://doi.org/10.1016/j.ijhcs.2020.102551

Herm, L. V., Heinrich, K., Wanner, J. and Janiesch, C.(2023), Stop ordering machine learning algorithms by their explainability! A user-centered investigation of performance and explainability, International Journal of Information Management, (vol.69, pp.1-20). https://doi.org/10.1016/j.ijinfomgt.2022.102538

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D..(2019) Grad-CAM: Visual explanations from deep networks via gradient-based localization Computer vision and pattern recognition, pp.618–626. https://arxiv.org/abs/1610.02391

Labe, Z. M. and Barnes, E. A.(2021). Detecting Climate Signals Using Explainable AI With Single-Forcing Large Ensembles, Journal of Advances in Modeling Earth Systems(JAMES), 13, e2021MS002464, https://doi. org/10.1029/2021MS002464., https://doi.org/10.1029/2021MS002464

Gagne, D. J., Haupt, S. E., Nychka, D. W., & Thompson, G. (2019). Interpretable deep learning for spatial analysis of severe hailstorms. American Meteorological Society (vol.147, issue.8, pp.2827–2845). https://doi.org/10.1175/MWR-D-18-0316.1

Heo, S., Ko, J., Kim, S. Y., Jeong, C., Hwangbo, S. and Yoo, C. K.(2022). Explainable AI-driven net-zero carbon roadmap for petrochemical industry considering stochastic scenarios of remotely sensed offshore wind energy, Journal of Cleaner Production, (vol.379, issue.2, pp.1-12). https://doi.org/10.1016/j.jclepro.2022.134793

Krening, S., Harrison, B., Feigh, K. M., Isbell, C. L., Riedl, M. and Thomaz, A. ‘(2016)Learning from explanations using sentiment and advice in RL,’’ IEEE Trans. Cogn. Develop. Syst., (vol.9, issue.1,pp. 44–55). https://doi.org/10.1109/TCDS.2016.2628365

Caruana, R., Lou, Y., Gehrke, J., Koch, R., Sturm,M. and Elhadad, N.(2015) Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission,’ in Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pp.1721–1730. https://doi.org/10.1145/2783258.2788613

Liao, V., Gruen, D. and Miller, S.(2020). Questioning the AI: Informing Design Practices for Explainable AI User Experiences. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, pp.1–15. https://doi.org/10.1145/3313831.3376590

Xu, W.(2023) A User experience 3.0(UX 3.0)” paradigm framework: User experience design for human-centered AI systems, pp.1-11, https://arxiv.org/abs/2403.01609,

Sharma, N.,Grotenhuijs, K., Gemert-Pijnen, J. E. W. C. V.,Oinas-Kukkonen, H. . and Braakman-Jansen, L.M.A.(2023), Low-Fidelity Prototype of a Sensor-Dependent Interaction Platform: Formative Evaluation With Informal Caregivers of Older Adults With Cognitive Impairment, JMIR XR and Spatial computing, 8,1-20, https://preprints.jmir.org/preprint/53402 https://doi.org/10.2196/53402

Anderson, P., Fernando, B., Johnson, M. and SGould, S.(2016) Spice: Semantic propositional image caption evaluation.” In European Conference on Computer Vision,, Springer 382–398. https://doi.org/10.1007/978-3-319-46454-1_24

Beck, A. and Teboulle, M.(2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems,“ SIAM journal on imaging sciences, (vol. 2, issue. 1, pp.183–202). https://doi.org/10.1137/080716542

Eiband, M., Schneider, H., Bilandzic, M., Fazekas-Con, J., Haug, M., Hussmann, H. (2020) Bringing Transparency Design into Practice, Explainable IUIs, ACM, pp.211-223.

Fox, M., Long, D. and Magazzeni, D.(2017) Explainable planning,”’ in Proc. IJCAI Workshop XAI,, pp.24–30.

Robnik_Sikonja, M., Kononenko, I..(2008) Explaining classi_cations for individual in- stances, IEEE Transactions on Knowledge and Data Engineering, (vol.20, issue.5, pp.589). https://doi.org/10.1109/TKDE.2007.190734

Carvalho, D. V., Pereira, E. M., & Cardoso, J. S. (2019). Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics, (vol.8, issue.832, pp.1-34) https://doi.org/10.3390/electronics8080832

Du, M., Liu, N., & Hu, X. (2018). Techniques for interpretable machine learning. arXiv preprint arXiv:1808.00033.

Miller, T. (2019). Explanation in Artificial Intelligence: Insights from the Social Sciences. Artificial Intelligence, (vol.267, pp.1-38). https://doi.org/10.1016/j.artint.2018.07.007

Ying, R., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J. (2019). GNN Explainer: A Tool for Posthoc Explanation of Graph Neural Networks. arXiv preprint arXiv:1903.03894.

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks?. arXiv preprint arXiv:1810.00826.

Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. and Yu, B. (2018). Interpretable machine learning: definitions, methods, and applications. Proceedings of the National Academy of Sciences, (vol.116, issue.44,pp. 22071-22080) https://doi.org/10.1073/pnas.1900654116

Ahmad, A. M., Eckert, C., Teredesai, A., and McKelvey, G. (2018). Interpretable Machine Learning in Healthcare. In IEEE Intelligent Informatics Bulletin. New York, NY: IEEE, pp.1-7. https://doi.org/10.1109/ICHI.2018.00095

Lakkaraju, H., Kamar, E., Caruana, R., and Leskovec, J. (2019). Faithful and Customizable Explanations of Black Box Models. In AIES '19 Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. ACM New York, NY, USA, (pp. 131-138). https://doi.org/10.1145/3306618.3314229

Kolasani, S.(2023). Innovations in digital, enterprise, cloud, data transformation, and organizational change management using agile, lean, and data-driven methodologies. International Journal of Machine Learning and Artificial Intelligence, (vol.4, issiue.4, pp.1-18).

Rong, Y., Leemann, T., Nguyen, T.T., Fiedler, L., Qian, P., Unhelkar, V., Seidel, T., Kasneci, G.; Kasneci, E.(2024) Towards Human-Centered Explainable AI: A Survey of User Studies for Model Explanations. IEEE Trans. Pattern Anal. Mach. Intell. (vol.46, pp.2104–2122). https://doi.org/10.1109/TPAMI.2023.3331846

Ribeiro, M. T., Singh, S. and Guestrin, C.(2016) “Why Should I Trust You?” Explaining the Predictions of Any Classifier, KDD 2016 San Francisco, CA, USA , pp.1-10. https://doi.org/10.1145/2939672.2939778

Rodriguez-Perez R, Bajorath J (2020) Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions. Journal of Computer Aided Mol Des, (vol.34, pp.1013–1026) https://doi.org/10.1007/s10822-020-00314-0

Doshi-Velez, F. and Kim, B. (2017), Towards a Rigorous Science of Interpretation Learning, arXIV:1702.08608V2[stat.ML], 1-14.

Evren, D. (2020). Explainable Artificial Intelligence (xAI) Approaches and Deep Meta-Learning Models, Advances in Deep Learning Publisher: InTechOpen, pp.1-19, DOI: 10.5772/intechopen.92172.

Bauer, K., Hinz, O., Aalat, W. V. D., Weinhardt, C. (2021). Expl(AI)n It to Me – Explainable AI and Information Systems Research, Business Information System Engineering, pp.1-4, https://doi.org/10.1007/s12599-021-00683-2

Zhang, Y., Teoh, B. K., Wu, M., Chen, J., Zhang, L.(2023), Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence, Siencedirect, (vol.262, pp.1-15)

Joshi, A. M., & Prabhune, S. (2019). Random Forest: A Hybrid Implementation for Sarcasm Detection in Public Opinion Mining. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 12, pp. 5022–5025). https://doi.org/10.35940/ijitee.l3758.1081219

S, Kamalalochana., & Guptha, Dr. N. (2019). Optimizing Random Forest to Detect Disease in Apple Leaf. In International Journal of Engineering and Advanced Technology (Vol. 8, Issue 5s, pp. 244–249). https://doi.org/10.35940/ijeat.e1049.0585s19

T., G., M., V. Y., M., U., D., R., & K., R. B. (2020). Prediction of Lung Cancer Risk using Random Forest Algorithm Based on Kaggle Data Set. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 6, pp. 1623–1630). https://doi.org/10.35940/ijrte.f7879.038620

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>