The Optimal Deploy Method of Multi Redundancy FPGA Gateway Design
Main Article Content
Abstract
Prevention of geological disasters is essential in highaltitude or semi high mountain plateaus and hilly areas. To monitor disaster, the manuscript presents a design method of distributed redundancy FPGA (Field Programmable Gate Array) gateway. This gateway can test a series of parameters in order to estimate geological disaster. However, the detection of geological disasters is complex work, for the test fields are located in different monitoring place and every place has a different environment condition. Meanwhile, the same type of monitoring parameters should be monitored more than two places, and the place may be changed, it results in the problem of distributed redundant monitoring. So, there are three kinds of monitoring actors: the active detection one, the auxiliary detection one, and the redundancy one. And these actors can transform one to the other. To obtain the balance between the communication resources and effective detection of geological disasters, the design of distributed redundancy gateway should be dynamic deployed based on the environmental and detection condition change. The article adopts a redundant gateway design using multiple FPGA in hardware, and uses distributed redundant decision-making method in software. It uses a wireless redundancy decision-making optimization method, and gives a design example for ‘the atomic cloud’ application of infrasound monitoring.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Aseeri M A S,Alasows A A,Ahmad M R(2016). Design of DRFM system based on FPGA with high resources[C].Design & Test Symposium (IDT),2016 11th International. IEEE: DOI: https://doi.org/10.1109/IDT.2016.7843036
MAGDALENO E,RODRÍGUEZ M,PÉREZ F,et al(2013). A FPGA embedded web server for remote monitoring and control of smart sensors networks [J]. sensors,14(1): 416-430. DOI: https://doi.org/10.3390/s140100416
Mittal, S.. (2018). A survey of fpga-based accelerators for convolutional neural networks. Neural Computing and Applications. DOI: https://doi.org/10.1007/s00521-018-3761-1
Zhao, L. . (2024). A scalable multi-fpga platform for hybrid intelligent optimization algorithms. Electronics, 13. DOI: https://doi.org/10.3390/electronics13173504
Bai, L. , Zhao, Y. , & Huang, X. . (2018). A cnn accelerator on fpga using depthwise separable convolution. Circuits and Systems II: Express Briefs, IEEE Transactions on, PP(99), 1-1. DOI: https://doi.org/10.1109/TCSII.2018.2865896
Gholami, M. , Farsa, E. Z. , & Karimi, G. . (2021). Reconfigurable field-programmable gate array-based on-chip learning neuromorphic digital implementation for nonlinear function approximation. International Journal of Circuit Theory and Applications. DOI: https://doi.org/10.1002/cta.3075
Sahoo S S, Ranjbar B, Kumar A(2021). Reliability-Aware Resource Management in Multi-/Many-Core Systems: A Perspective Paper[J]. Journal of Low Power Electronics and Applications, 2021, 1 1(1). DOI: https://doi.org/10.3390/jlpea11010007
Li X, Yan G, Ye J, et al(2018). Fault tolerance on-chip: a reliable computing paradigm using self-test, self-diagnosis, and self-repair (3S) approach[J]. Science China Information Sciences, 2018, 61(1 1): 1-17. DOI: https://doi.org/10.1007/s11432-017-9290-4
Wirthlin, M. . (2015). High-reliability fpga-based systems: space, high-energy physics, and beyond. Proceedings of the IEEE, 103(3), 379-389. DOI: https://doi.org/10.1109/JPROC.2015.2404212
Reorda, M. S. , Sterpone, L. , & Ullah, A. . (2013). An error-detection and self-repairing method for dynamically and partially reconfigurable systems. IEEE. DOI: https://doi.org/10.1109/ETS.2013.6569377
Lee, J. , Bhagavatula, S. , Bhunia, S. , Roy, K. , & Jung, B. . (2012). Self-healing design in deep scaled cmos technologies. Journal of Circuits Systems & Computers, 21(06), 1240011-1240011-15. DOI: https://doi.org/10.1142/S0218126612400117
Narasimhan S, Paul S, Chakraborty R S, et al(2010). System level self-healing for parametric yield and reliability improvement under power bound[C]//2010 NASA/ESA Conference on Adaptive Hardware and Systems. IEEE, 2010: 52-58. DOI: https://doi.org/10.1109/AHS.2010.5546231
Huang, X. , Zhao, Y. , Wang, X. , Wang, F. , Liu, L. , & Yang, H. , et al. (2024). Implementing versatile programmable logic functions using two magnetization switching types in a single device. Advanced Functional Materials, 34(3). DOI: https://doi.org/10.1002/adfm.202308219
Ilwoong, Kim, Woosik, Jeong, Dongho, & Kang, et al. (2015). Fully programmable memory bist for commodity drams. ETRI Journal, 37(4), 787-792. DOI: https://doi.org/10.4218/etrij.15.0115.0040 0
Yuan, C. , Huang, L. , Wang, J. , & Li, Q. . (2018). Micro-architecture design for low overhead fault tolerant network-on-chip. IEEE. DOI: https://doi.org/10.1109/ISCAS.2018.8351501
Liu, J. , Harkin, J. , Yuhua, L. , & Maguire, L. P. . (2014). Online fault detection for networks-on-chip interconnect. IEEE. DOI: https://doi.org/10.1109/AHS.2014.6880155
Wang J, Ebrahimi M, Huang L, et al(2019). Efficient design-for-test approach for networks-on-chip[J]. IEEE Transactions on Computers, 68(2): 198-213. https://ieeexplore.ieee.org/document/8440731
Zhan J, Huang L, Wang J, et al(2019). Online path-based test method for network-on-chip[C]//2019 .IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019: 1-5. DOI: https://doi.org/10.1109/ISCAS.2019.8702409
Pavan, Poluri, Ahmed, & Louri. (2016). Shield: a reliable network-on-chip router architecture for chip multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 27(10), 3058-3070. DOI: https://doi.org/10.1109/TPDS.2016.2521641
Vip in K, Fahmy S A(2018). FPGA dynamic and partial reconfiguration: A survey of architectures, methods, and applications[J]. ACM Computing Surveys (CSUR),5 1(4): 1-39. DOI: https://doi.org/10.1145/3193827
Lee, Y. H. , & Nair, S. . (2017). A Smart Gateway Framework for IOT Services. IEEE International Conference on Internet of Things. IEEE. pp. 107-114. DOI: https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.44
Jutila M(2016). An Adaptive Edge Router Enabling Internet of Things[J]. Internet of Things Journal, IEEE, 2016, 3(6):1061-1069. DOI: https://doi.org/10.1109/JIOT.2016.2550561
N arayanan R, Murthy C(2017). A probabilistic framework for protocol conversions in IoT networks with heterogeneous gateways[J]. IEEE Communications Letters, 2017:1-1. https://ieeexplore.ieee.org/document/7990138
L. Yang, Y. Wei, F. R. Yu and Z. Han(2022),Joint Routing and Scheduling Optimization in Time-Sensitive Networks Using Graph-Convolutional-Network-Based Deep Reinforcement Learning, in IEEE Internet of Things Journal, vol. 9, no. 23, pp. 23981-23994, 1 Dec.1, 2022, DOI: https://doi.org/10.1109/JIOT.2022.3188826
Akasiadis, C. , Pitsilis, V. , & Spyropoulos, C. D. . (2019). A multi-protocol iot platform based on open-source frameworks. Sensors, 19(19), 4217-. DOI: https://doi.org/10.3390/s19194217
Song Xin(2020). Design and Implementation of Industrial Internet Gateway Based on Microservice Architecture [D]. Beijing Jiaotong University. https://cdmd.cnki.com.cn/Article/CDMD-10056-1021826347.htm
Zhang, Y. , Sun, W. , & Shi, Y. . (2020). Architecture and implementation of industrial internet of things (iiot) gateway. IEEE. DOI: https://doi.org/10.1109/ICCASIT50869.2020.9368773
Sun Xihao, Li Yimin, Hua Jing, etc(2007). Type-2 mathematical model for redundant structures in biological systems [J]. Fuzzy systems and mathematics, 21(5):8. https://0.3969/j.issn.1001-7402.2007.05.028
Liang Q,Mendel J M(2001).Interval type-2 fuzzy logic system:theory and design[J].IEEE Trans.Fuzzy systems,2001 ,132:195~220. DOI: http://dx.doi.org/10.1109/91.873577
Dwivedi, P. K., & Tripathi, S. P. (2019). A Simplified Interval Type-2 Fuzzy Implementation for Financial Credit Decision. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 10, pp. 3036–3044). DOI: https://doi.org/10.35940/ijitee.j9478.0881019
Usman, H., & Magaji, N. (2023). Interval Type - 2 Fuzzy Logic Controller Based Shunt Active Power Filter for Power Quality Enhencement. In International Journal of Engineering and Advanced Technology (Vol. 13, Issue 1, pp. 68–73). DOI: https://doi.org/10.35940/ijeat.a4299.1013123
Sumith, Karthik K, V., & Dr. Sandhya S. (2024). Implementation of A Delay-Tolerant Routing Protocol in the Network Simulator NS-3. In International Journal of Emerging Science and Engineering (Vol. 12, Issue 11, pp. 13–17). DOI: https://doi.org/10.35940/ijese.k2586.12111024
BS, S., Kumar B R, S., K, A., & S N, S. (2019). Routing Protocol using Fuzzy Logic for Vehicular Ad-Hoc Networks. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 2, pp. 4789–4794). DOI: https://doi.org/10.35940/ijrte.b2127.078219
Sharma, P. (2023). A Fuzzy Approach to Educational Grading Systems “Fuzzy Logic Based Grade Card.” In International Journal of Advanced Engineering and Nano Technology (Vol. 10, Issue 6, pp. 1–8). DOI: https://doi.org/10.35940/ijaent.g9582.0610623