Hcnnxgboost: A Hybrid Cnn-Xgboost Approach for Effective Emotion Detection in Textual Data
Main Article Content
Abstract
in recent years, emotional analysis has become a key focus in computational studies, driven by the need to understand societal sentiments. this exploration is motivated by its many promising applications, such as community well-being evaluation, human-computer interaction, suicide prevention, and personalized recommendations. even with progress in other areas like identifying expressions from facial cues and speech, the study of text-based emotion recognition remains a fascinating field of research because machines struggle to interpret context, especially compared to human capabilities. our research addresses this by introducing a multiclass text-based emotion detection system that combines a cnn architecture with xgboost for improved classification in natural language processing. we pre-process publicly available datasets and use glove pre-trained word embeddings for better text representation. a major contribution of our work is enhancing the feature space by combining cnn probabilities with the original text data. the proposed hcnnxgboost model outperforms all other machine learning and deep learning algorithms across the emoint, isear, and crowdflower datasets, achieving f-scores of 90.1%, 87.4%, and 62.2%, respectively. experimental evaluations on benchmark datasets show better f-scores, confirming the effectiveness of our approach. comparisons with other classifiers highlight the enhanced performance and effectiveness of our hybrid cnnxgboost (hcnnxgboost) model, making it one of the best solutions for emotion classification in natural language processing tasks.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Chatterjee, A., Gupta, U., Chinnakotla, M. K., Srikanth, R., Galley, M. & Agrawal, P. Understanding emotions in text using deep learning and big data. Comput. Hum. Behav. 93, 309-317 (2019). https://doi.org/10.1016/j.chb.2018.12.029
Lin, S. Y., Kung, Y. C. & Leu, F. Y. Predictive intelligence in harmful news identification by BERT-based ensemble learning model with text sentiment analysis. Inf. Process. Manage. 59, 102872 (2022). https://doi.org/10.1016/j.ipm.2022.102872
Kazmaier, J. & Vuuren, J. H. v. The power of ensemble learning in sentiment analysis. Expert Syst. Appl. 187, 115819 (2022). https://doi.org/10.1016/j.eswa.2021.115819 https://doi.org/10.1016/j.eswa.2021.115819
Briskilal, J. & Subalalitha, C. N. An ensemble model for classifying idioms and literal texts using BERT and RoBERTa. Inf. Process. Manage. 59, 102756 (2022). https://doi.org/10.1016/j.ipm.2021.102756 https://doi.org/10.1016/j.ipm.2021.102756
Li, C., Bao, Z., Li, L. & Zhao, Z. Exploring temporal representations by leveraging attention-based bidirectional LSTM-RNNs for multi-modal emotion recognition. Inf. Process. Manage. 57, 102185 (2020). https://doi.org/10.1016/j.ipm.2019.102185
Colnerič, N. & Demšar, J. Emotion recognition on Twitter: Comparative study and training a unison model. IEEE Trans. Affect. Comput. 11, 433-446 (2020). https://doi.org/10.1109/TAFFC.2018.2807817
Bharti, S. K., Varadhaganapathy, S., Gupta, R. K., Shukla, P. K., Bouye, M., Hingaa, S. K. & Mahmoud, A. Text-based emotion recognition using deep learning approach. Comput. Intell. Neurosci. 2022, 2645381 (2022). https://doi.org/10.1155/2022/2645381 https://doi.org/10.1155/2022/2645381
Hung, J. C., Lin, K. C. & Lai, N. X. Recognizing learning emotion based on convolutional neural networks and transfer learning. Appl. Soft Comput. 84, 105724 (2019). https://doi.org/10.1016/j.asoc.2019.105724 https://doi.org/10.1016/j.asoc.2019.105724
Behera, R. K., Jena, M., Rath, S. K. & Misra, S. Co-LSTM: Convolutional LSTM model for sentiment analysis in social big data. Inf. Process. Manage. 58, 102435 (2021). https://doi.org/10.1016/j.ipm.2020.102435
Vora, S. & Mehta, R. G. HDEL: A hierarchical deep ensemble approach for text-based emotion detection. Multimed. Tools Appl. (2024). https://doi.org/10.1007/s11042-024-19032-y https://doi.org/10.1007/s11042-024-19032-y
Ghosal, S. & Jain, A. Depression and suicide risk detection on social media using fasttext embedding and XGBoost classifier. Procedia Comput. Sci. 218, 1631-1639 (2023). https://doi.org/10.1016/j.procs.2023.01.141
Park, S. H., Bae, B. C. & Cheong, Y. G. Emotion recognition from text stories using an emotion embedding model. In 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), 2020. https://doi.org/10.1109/BigComp48618.2020.00014
Kalchbrenner, N., Grefenstette, E. & Blunsom, P. A convolutional neural network for modeling sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 655–665 (2014). https://doi.org/10.3115/v1/P14-1062
Kim, Y. Convolutional neural networks for sentence classification. In Proc. Conf. Empirical Methods in Natural Language Processing, 1746–1751 (2014). https://doi.org/10.3115/v1/D14-1181
Duque, A. B., Santos, L. J., Macedo, D. & Zanchettin, C. Squeezed very deep convolutional neural networks for text classification. In International Conference on Artificial Neural Networks, 193–207 (Springer, 2019). https://doi.org/10.1007/978-3-030-30487-4_16
Ibrahim, M. A., Khan, M. U. G., Mehmood, F., Asim, M. N. & Mahmood, W. Ghs-net: A generic hybridized shallow neural network for multi-label biomedical text classification. J. Biomed. Inform. 116, 103699 (2021). https://doi.org/10.1016/j.jbi.2021.103699
Yang, D. U., Kim, B., Lee, S. H., Ahn, Y. H. & Kim, H. Y. Autodefect defect text classification in residential buildings using a multi-task channel attention network. Sustain. Cities Soc. 103803 (2022). https://doi.org/10.1016/j.scs.2022.103803
Glorot, X., Bordes, A. & Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 315-323 (2011).
Srivastava, N. et al. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929-1958 (2014).
Botev, Z. I., Kroese, D. P., Rubinstein, R. Y. & L'Ecuyer, P. The cross-entropy method for optimization. In Handbook of Statistics, 31, 35-59 (2013). https://doi.org/10.1016/B978-0-444-53859-8.00003-5
Pennington, J., Socher, R. & Manning, C. GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543 (2014). https://doi.org/10.3115/v1/D14-1162
Goodfellow, I., Bengio, Y. & Courville, A. 6.2. 2.3 softmax units for multinoulli output distributions. Deep Learning, 180 (2016).
Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. CoRR abs/1412.6980 (2014).
Bergstra, J., Yamins, D. & Cox, D. D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28, 115–123 (JMLR.org, 2013).
Mohammad, S., Bravo-Marquez, F., Salameh, M. & Kiritchenko, S. SemEval-2018 task 1: Affect in tweets. In Proceedings of the 12th International Workshop on Semantic Evaluation, 1–17 (2018). https://doi.org/10.18653/v1/S18-1001
Wallbott, H. G. & Scherer, K. R. How universal and specific is emotional experience? Evidence from 27 countries on five continents. Soc. Sci. Inf. 25, 763–795 (1986). https://doi.org/10.1177/053901886025004001
CrowdFlower. Sentiment Analysis: Emotion in Text (2016). https://doi.org/10.1109/TAFFC.2019.2926724
Akhtar, M. S., Ghosal, D., Ekbal, A., Bhattacharyya, P. & Kurohashi, S. All-in-One: Emotion, sentiment and intensity prediction using a multi-task ensemble framework. IEEE Trans. Affect. Comput. 13, 285-297 (2022). https://doi.org/10.1109/TAFFC.2019.2926724
Bostan, L. A. M. & Klinger, R. An analysis of annotated corpora for emotion classification in text. In Proceedings of the 27th International Conference on Computational Linguistics, 2104–2119 (2018).
Felbo, B., Mislove, A., Søgaard, A., Rahwan, I. & Lehmann, S. Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion, and sarcasm. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 1615–1625 (Assoc. Comput. Linguist., 2017). https://doi.org/10.18653/v1/D17-1169
Kratzwald, B., Ilić, S., Kraus, M., Feuerriegel, S. & Prendinger, H. Deep learning for affective computing: Text-based emotion recognition in decision support. Decis. Support Syst. 115, 24–35 (2018). https://doi.org/10.1016/j.dss.2018.09.002
Batbaatar, E., Li, M. & Ryu, K. Semantic-emotion neural network for emotion recognition from text. IEEE Access 7, 111866–111878 (2019). https://doi.org/10.1109/ACCESS.2019.2934529
Rei, L. & Mladenić, D. Detecting fine-grained emotions in literature. Appl. Sci. 13, 7502 (2023). https://doi.org/10.3390/app13137502
Youngquist, O. An ensemble neural network for the emotional classification of text. In the Thirty-Third International Flairs Conference (2020).
Reddy, M. V. K., & Pradeep, Dr. S. (2021). Envision Foundational of Convolution Neural Network. In International Journal of Innovative Technology and Exploring Engineering (Vol. 10, Issue 6, pp. 54–60). https://doi.org/10.35940/ijitee.f8804.0410621
Kumar, P., & Rawat, S. (2019). Implementing Convolutional Neural Networks for Simple Image Classification. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 2, pp. 3616–3619). https://doi.org/10.35940/ijeat.b3279.129219
Priyatharshini, Dr. R., Ram. A.S, A., Sundar, R. S., & Nirmal, G. N. (2019). Real-Time Object Recognition using Region based Convolution Neural Network and Recursive Neural Network. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 4, pp. 2813–2818). https://doi.org/10.35940/ijrte.d8326.118419