A Low-Cost Microstrip Patch Antenna Based Metamaterials for Non-Invasive Breast Tumor Detection
Main Article Content
Abstract
Microstrip patch antennas have been used extensively in broadband telecommunication applications. Despite their countless promises, their narrow bandwidth and the loss at high-frequency bands have limited their usage in medical applications. The purpose of this work is to design a patch antenna sensor that is a low-cost microstrip sensor which is suitable for biomedical application to detect a breast cancer tumor. The proposed antenna sensor is comprised of three layers namely ground, substrate and microstrip patch sensor that can be easily fabricated by using standard printed circuit board technique. The comparison study between two resonance frequency at 1.8 GHz and 2.9 GHz has been performed and investigated by especially accurate simulation with the presence and absence of tumor cell. Results obtained using computer simulation technology CST Studio Suite 3D EM simulation and analysis software indicates that the design can detect tumor by using phase shift detection and depth of the return loss. The result shows that the antenna return loss is getting lower in -39 dB at 1.8 GHz and -12 dB at 2.9 GHz and the phase shift detected with the presence of the tumor cell. Specific absorption rate has been also calculated (0.746 and 0.934 W/kg) and found to be in acceptable range and not exceed the standard value of <1.6 W/kg, which mean that the patch sensor is compatible for human and biomedical application. The breast phantom models without/with a tumor have been numerically simulated by using the antenna operating as a transceiver for the detection of cancer tumor cells. Two parameters have been observed, the frequency phase shift and the deep amount of reflection return loss. In summary, this study concludes that a lower frequency band will result in higher penetration depth but a lower resolution. Meanwhile, higher frequency band will provide a better resolution, but the penetration depth will be lesser as seen in the comparison study between 1.8 GHz and 2.9 GHz. The proposed work could provide a pathway on the design of electromagnetic sensors for biomedical applications.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers 2019, 5, 66. https://doi.org/10.1038/s41572-019-0111-2
Waks, A.G.; Eric, P. Winer, Breast Cancer Treatment: A Review. JAMA 2019, 321, 288–300. [PubMed] https://doi.org/10.1001/jama.2018.19323
Stewart, B.W.; Wild, C.P. World Cancer Report; World Health Organization: Geneva, Switzerland, 2014.
Siegal, R.; Miller, K.D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 2014, 64, 9–29. [PubMed] https://doi.org/10.3322/caac.21208
Zerrad, F.E.; Taouzari, M.; Makroum, E.M.; el Aoufi, J.; Islam, M.T.; Ozkaner, V.; Abdulkarim, Y.I.; Karaaslan, M. Multilayered metamaterials array antenna based on artificial magnetic conductor’s structure for the application diagnostic breast cancer detection with microwave imaging. Med. Eng. Phys. 2022, 99, 103737. https://doi.org/10.1016/j.medengphy.2021.103737
Alibakhshikenari, M.; Virdee, B.S.; Shukla, P.; Parchin, N.O.; Azpilicueta, L.; See, C.H.; Abd-Alhameed, R.A.; Falcone, F.; Huynen, I.; Denidni, T.A.; et al. Metamaterial-Inspired Antenna Array for Application in Microwave Breast Imaging Systems for Tumor Detection. IEEE Access 2020, 8, 174667–174678. https://doi.org/10.1109/ACCESS.2020.3025672
Aldhaeebi, M.A.; Alzoubi, K.; Almoneef, T.S.; Bamatraf, S.M.; Attia, H.; Ramahi, O.M. Review of Microwaves Techniques for Breast Cancer Detection. Sensors 2020, 20, 2390. https://doi.org/10.3390/s20082390
Hossain, A.; Islam, M.T.; Islam, M.T.; Chowdhury, M.E.H.; Rmili, H.; Samsuzzaman, M. A Planar Ultrawideband Patch Antenna Array for Microwave Breast Tumor Detection. Materials 2020, 13, 4918. [PubMed] https://doi.org/10.3390/ma13214918
Rao, P.K.; Yadav, A.R.; Mishra, R. AMC-based antenna sensor for breast tumors detection. Int. J. Microw. Wirel. Technol. 2020,13, 954–961. https://doi.org/10.1017/S1759078720001609
Mahmud, M.Z.; Islam, M.T.; Misran, N.; Kibria, S.; Samsuzzaman, M. Microwave Imaging for Breast Tumor Detection Using Uniplanar AMC Based CPW-Fed Microstrip Antenna. IEEE Access 2018, 6, 44763–44775. https://doi.org/10.1109/ACCESS.2018.2859434
Islam, M.T.; Mahmud, M.Z.; Islam, M.T.; Kibria, S.; Samsuzzaman, M. A Low Cost and Portable Microwave Imaging System for Breast Tumor Detection Using UWB Directional Antenna array. Sci. Rep. 2019, 9, 15491. [PubMed] https://doi.org/10.1038/s41598-019-51620-z
Musa, N.; Yadgar, A.; Salah, S.; Olcay, A.; Rashad, H.; Bhargav, A.; Cristian, R., Low-Cost Antenna-Array-Based Metamaterials for Non-Invasive Early-Stage Breast Tumor Detection in the Human Body. Biosensors 2022, 12, 828. https://doi.org/10.3390/bios12100828
Langtry, A. Understanding Cancer of the Breast; Irish Cancer Society: Dublin, Ireland, 2008
Abdulkarim, Y.I.; Deng, L.; Yang, J.; Çolak, ¸S.; Karaaslan, M.; Huang, S.; He, L.; Luo, H. Tunable left-hand characteristics in multi-nested square-split-ring enabled metamaterials. J. Cent. South Univ. 2020, 27, 1235–1246. https://doi.org/10.1007/s11771-020-4363-5
Abdulkarim, Y.I.; Dalgaç, ¸S.; Alkurt, F.O.; Muhammadsharif, F.F.; Awl, H.N.; Saeed, S.R.; Altınta¸s, O.; Li, C.; Bakır, M.; Karaaslan, M.; et al. Utilization of a triple hexagonal split ring resonator (SRR) based metamaterial sensor for the improved detection of fuel adulteration. J. Mater. Sci. Mater. Electron. 2021, 32, 24258–24272. https://doi.org/10.1007/s10854-021-06891-6
Abdulkarim, Y.I.; Deng, L.; Karaaslan, M.; Unal, E. Determination of the liquid chemicals depending on the electrical characteristics by using metamaterial absorber based sensor. Chem. Phys. Lett. 2019, 732, 136655. https://doi.org/10.1016/j.cplett.2019.136655
Abdulkarim, Y.I.; Muhammadsharif, F.F.; Bakır, M.; Awl, H.N.; Karaaslan, M.; Deng, L.; Huang, S. Hypersensitized metamaterials based on a corona-shaped resonator for efficient detection of glucose. Appl. Sci. 2020, 11, 103. https://doi.org/10.3390/app11010103
Abdulkarim, Y.I.; Xiao, M.; Awl, H.N.; Muhammadsharif, F.F.; Lang, T.; Saeed, S.R.; Alkurt, F.Ö.; Bakır, M.; Karaaslan, M.; Dong, J. Simulation and lithographic fabrication of a triple band terahertz metamaterial absorber coated on flexible polyethylene terephthalate substrate. Opt. Mater. Express 2021, 12, 338–359. https://doi.org/10.1364/OME.447855
Abdulkarim, Y.I.; Awl, H.N.; Muhammadsharif, F.F.; Karaaslan, M.; Mahmud, R.H.; Hasan, S.O.; I¸sık, Ö.; Luo, H.; Huang, S.; de Cos Gómez, M.E. A Low-Profile Antenna Based on Single-Layer Metasurface for Ku-Band Applications. Int. J. Antennas Propag. 2020, 2020, 8813951. https://doi.org/10.1155/2020/8813951
Ali, H.O.; Al-Hindawi, A.M.; Abdulkarim, Y.I.; Nugoolcharoenlap, E.; Tippo, T.; Alkurt, F.Ö.; Altintas, O.; Karaaslan, M. Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications. Chin. Phys. B 2022, 31, 058401. https://doi.org/10.1088/1674-1056/ac2b1c
Cheng, Y.; Fan, J.; Luo, H.; Chen, F. Dual-band and high-efficiency circular polarization converter based on anisotropic metamaterial, IEEE Access 2019, 8, 7615–7621. https://doi.org/10.1109/ACCESS.2019.2962299
Liang, Y.; Koshelev, K.; Zhang, F.; Lin, H.; Lin, S.; Wu, J.; Jia, B.; Kivshar, Y. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett. 2020, 20, 6351–6356. https://doi.org/10.1021/acs.nanolett.0c01752
Ramaccia, D.; Sounas, D.L.; Alù, A.; Bilotti, F.; Toscano, A. Nonreciprocity in antenna radiation induced by space-time varying metamaterial cloaks. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1968–1972. https://doi.org/10.1109/LAWP.2018.2870688
Hussein, M.; Awwad, F.; Jithin, D.; el Hasasna, H.; Athamneh, K.; Iratni, R. Breast cancer cells exhibits specific dielectric signature in vitro using the open-ended coaxial probe technique from 200 MHz to 13.6 GHz. Sci. Rep. 2019, 9, 4681. https://doi.org/10.1038/s41598-019-41124-1
Balanis, Constantine A. Antenna Theory: Analysis and Design. 3rd ed. Hoboken, NJ: John Wiley, 2005.
Rao, S. V. R., Prasad, A. M., & Rani, Ch. S. (2019). Antenna Array Weight Synthesis for Low Side Lobe Levels using Window Functions. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 1, pp. 3074–3081). Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP. https://doi.org/10.35940/ijeat.a1664.109119
Jayanth, M. V., Harika, B. S. L., Aashika, B., Lakshman, P., & Santosh, G. S. (2019). Position only Antenna Array Synthesis using Normal Distributed Invasive Weed Optimization. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 2, pp. 3277–3280). Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP. https://doi.org/10.35940/ijitee.b6641.129219
Ram, G. C., kumar, D. G., & Raju, G. R. L. V. N. S. (2020). Synthesis of Linear Antenna Array with Optimal SLL and Beam Width. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 9, Issue 1, pp. 391–395). Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP. https://doi.org/10.35940/ijrte.a1612.059120