Deep Learning Approach for Advanced COVID-19 Analysis

Main Article Content

Rania Alhalaseh
Mohammad Abbadi
Sura Kassasbeh

Abstract

Since the spread of the COVID-19 pandemic, the number of patients has increased dramatically, making it difficult for medical staff, including doctors, to cover hospitals and monitor patients. Therefore, this work depends on Computerized Tomography (CT) scan images to diagnose COVID-19. CT scan images are used to diagnose and determine the severity of the disease. On the other hand, Deep Learning (DL) is widely used in medical research, making great progress in medical technologies. For the diagnosis process, the Convolutional Neural Network (CNN) algorithm is used as a type of DL algorithm. Hence, this work focuses on detecting COVID-19 from CT scan images and determining the severity of the illness. The proposed model is as follows: first, classifying CT scan images into infected or not infected using one of the CNN structures, Residual Neural Networks (ResNet50); second, applying a segmentation process for the infected images to identify lungs and pneumonia using the SegNet algorithm (a CNN architecture for semantic pixel-wise segmentation) so that the disease's severity can be determined; finally, applying linear regression to predict the disease's severity for any new image. The proposed approach reached an accuracy of 95.7% in the classification process and lung and pneumonia segmentation of 98.6% and 96.2%, respectively. Furthermore, a regression process reached an accuracy of 98.29%.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Rania Alhalaseh, Mohammad Abbadi, and Sura Kassasbeh , Trans., “Deep Learning Approach for Advanced COVID-19 Analysis”, IJITEE, vol. 12, no. 10, pp. 1–14, Oct. 2023, doi: 10.35940/ijitee.J9725.09121023.
Section
Articles

How to Cite

[1]
Rania Alhalaseh, Mohammad Abbadi, and Sura Kassasbeh , Trans., “Deep Learning Approach for Advanced COVID-19 Analysis”, IJITEE, vol. 12, no. 10, pp. 1–14, Oct. 2023, doi: 10.35940/ijitee.J9725.09121023.
Share |

References

Meters, W. World Meters – Coronavirus. [Online]. Available: [https://www.worldometers.info/coronavirus/]. [Accessed: June 2023].

Organization, W.W.H. WHO Coronavirus (COVID-19) Dashboard. [Online]. Available: [https://covid19.who.int]. [Accessed: June 2023].

Carfì, A.; Bernabei, R.; Landi, F.; et al. “Persistent symptoms in patients after acute COVID-19”. Jama 2020, 324, 603–605. https://doi.org/10.1001/jama.2020.12603

Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. “Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases”. Radiology 2020, 296, E32–E40. https://doi.org/10.1148/radiol.2020200642

Li, W.T.; Ma, J.; Shende, N.; Castaneda, G.; Chakladar, J.; Tsai, J.C.; Apostol, L.; Honda, C.O.; Xu, J.; Wong, L.M.; et al. “Using machine learning of clinical data to diagnose COVID-19: a systematic review and meta-analysis”. BMC medical informatics and decision making 2020, 20, 1–13. https://doi.org/10.1186/s12911-020-01266-z

Ghoshal, B.; Tucker, “A. Estimating uncertainty and interpretability in deep learning for coronavirus (COVID-19) detection”. arXiv preprint arXiv:2003.10769 2020.

Maghdid, H.S.; Asaad, A.T.; Ghafoor, K.Z.; Sadiq, A.S.; Mirjalili, S.; Khan, M.K. “Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms”. In Proceedings of the Multimodal image exploitation and learning 2021. SPIE, 2021, Vol. 11734, pp. 99–110. https://doi.org/10.1117/12.2588672

Sarker, I.H. “Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions”. SN Computer Science; 2. Epub ahead of print 2021, 2021. https://doi.org/10.1007/s42979-021-00815-1

Liu, X.; Guo, S.; Yang, B.; Ma, S.; Zhang, H.; Li, J.; Sun, C.; Jin, L.; Li, X.; Yang, Q.; et al. “Automatic organ segmentation for CT scans based on super-pixel and convolutional neural networks”. Journal of digital imaging 2018, 31, 748–760. https://doi.org/10.1007/s10278-018-0052-4

Ahmad, A.; Garhwal, S.; Ray, S.K.; Kumar, G.; Malebary, S.J.; Barukab, O.M. “The number of confirmed cases of covid-19 by using machine learning: Methods and challenges”. Archives of Computational Methods in Engineering 2021, 28, 2645–2653. https://doi.org/10.1007/s11831-020-09472-8

Zoabi, Y.; Shomron, N. “COVID-19 diagnosis prediction by symptoms of tested individuals: a machine learning approach”. MedRxiv 2020, pp. 2020–05. https://doi.org/10.1101/2020.05.07.20093948

Peng, M.; Yang, J.; Shi, Q.; Ying, L.; Zhu, H.; Zhu, G.; Ding, X.; He, Z.; Qin, J.; Wang, J.; et al. “Artificial Intelligence Application in COVID-19 Diagnosis and Prediction”. COVID-19 Global literature on coronavirus disease - World Health Organization 2020. https://doi.org/10.2139/ssrn.3541119

Parekh, M.; Donuru, A.; Balasubramanya, R.; Kapur, S. “Review of the chest CT differential diagnosis of ground-glass opacities in the COVID era”. Radiology 2020, 297, E289–E302. https://doi.org/10.1148/radiol.2020202504

Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Acharya, U.R. “Automated detection of COVID-19 cases using deep neural networks with X-ray images”. Computers in biology and medicine 2020, 121, 103792. https://doi.org/10.1016/j.compbiomed.2020.103792

Alazab, M.; Venkatraman, S.; Watters, P.; Alazab, M. “Information security governance: the art of detecting hidden malware”. In IT security governance innovations: theory and research; IGI Global, 2013; pp. 293–315. https://doi.org/10.4018/978-1-4666-2083-4.ch011

LeCun, Y.; Bengio, Y.; Hinton, G. “Deep learning”. nature 2015, 521, 436–444. https://doi.org/10.1038/nature14539

Naudé, W. “Artificial Intelligence against COVID-19: An early review” 2020. IZA Discussion Papers, No. 13110, Institute of Labor Economics (IZA), Bonn. [Online] Available: [ https://www.econstor.eu/handle/10419/216422]. [August: June 2023]. https://doi.org/10.2139/ssrn.3568314

Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.L.; Chen, S.C.; Iyengar, S.S. “A survey on deep learning: Algorithms, techniques, and applications”. ACM Computing Surveys (CSUR) 2018, 51, 1–36. https://doi.org/10.1145/3234150

Narin, A.; Kaya, C.; Pamuk, Z. “Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks”. Pattern Analysis and Applications 2021, 24, 1207–1220. https://doi.org/10.1007/s10044-021-00984-y

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. “Dropout: a simple way to prevent neural networks from overfitting”. The journal of machine learning research 2014, 15, 1929–1958.

Mahdy, L.N.; Ezzat, K.A.; Elmousalami, H.H.; Ella, H.A.; Hassanien, A.E. “Automatic X-ray COVID-19 Lung Image Classification 664System based on Multi-Level Thresholding and Support Vector Machine”. MedRxiv 2020, pp. 2020–03. https://doi.org/10.1101/2020.03.30.20047787

Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. “Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions”. Journal of big Data 2021, 8, 1–74. https://doi.org/10.1186/s40537-021-00444-8

Rajakumar, G.; Leela, R.S.J.; Darney, P.E.; Narayanan, K.L.; Krishnan, R.S.; Robinson, Y.H. “Seg-Net: Automatic Lung Infection Segmentation of COVID-19 from CT images”. In Proceedings of the 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). IEEE, 2021, pp. 739–744. https://doi.org/10.1109/ICOEI51242.2021.9453022

Simonyan, K.; Zisserman, A. “Very Deep Convolutional Networks for Large-Scale Image Recognition”. arXiv 1409.1556 2014.

Zhu, J.S.; Ge, P.; Jiang, C.; Zhang, Y.; Li, X.; Zhao, Z.; Zhang, L.; Duong, T.Q. “Deep-learning artificial intelligence analysis of clinical variables predicts mortality in COVID-19 patients”. Journal of the American College of Emergency Physicians Open 2020, 1, 1364–1373. https://doi.org/10.1002/emp2.12205

Sharma, S. “Drawing insights from COVID-19 -infected patients using CT scan images and machine learning techniques: a study on 200 patients”. Environmental Science and Pollution Research 2020, 27, 37155–37163. https://doi.org/10.1007/s11356-020-10133-3

Kundu S, Elhalawani H, Gichoya JW, Kahn CE Jr. “How Might AI and Chest Imaging Help Unravel COVID-19's Mysteries?”. Radiol Artif Intell. 2020 May 6;2(3):e200053. doi: 10.1148/ryai.2020200053. PMID: 33928254; PMCID: PMC7233385. https://doi.org/10.1148/ryai.2020200053

Neri, E.; Miele, V.; Coppola, F.; Grassi, R. “Use of CT and artificial intelligence in suspected or COVID-19 positive patients: statement of the Italian Society of Medical and Interventional Radiology”. La radiologia medica 2020, 125, 505–508. https://doi.org/10.1007/s11547-020-01197-9

Zhang, K.; Liu, X.; Shen, J.; Li, Z.; Sang, Y.; Wu, X.; Zha, Y.; Liang, W.; Wang, C.; Wang, K.; et al. “Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography”. Cell 2020, 181, 1423–1433. https://doi.org/10.1016/j.cell.2020.04.045

Wang, S.; Zha, Y.; Li, W.; Wu, Q.; Li, X.; Niu, M.; Wang, M.; Qiu, X.; Li, H.; Yu, H.; et al. “A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis”. European Respiratory Journal 2020, 56. https://doi.org/10.1101/2020.03.24.20042317

Oh, Y.; Park, S.; Ye, J.C. “Deep learning COVID-19 Features on CXR using Limited Training Data Sets”. IEEE transactions on medical imaging 2020, 39, 2688–2700. https://doi.org/10.1109/TMI.2020.2993291

Wu, P.; Sun, X.; Zhao, Z.; Wang, H.; Pan, S.; Schuller, B. “Classification of lung nodules based on deep residual networks and migration learning”. Computational intelligence and neuroscience 2020, 2020. https://doi.org/10.1155/2020/8975078

Wong, H.Y.F.; Lam, H.Y.S.; Fong, A.H.T.; Leung, S.T.; Chin, T.W.Y.; Lo, C.S.Y.; Lui, M.M.S.; Lee, J.C.Y.; Chiu, K.W.H.; Chung, T.W.H.; et al. “Frequency and distribution of chest radiographic findings in patients positive for COVID-19”. Radiology 2020, 296, E72–E78. https://doi.org/10.1148/radiol.2020201160

Cohen, J.P.; Dao, L.; Roth, K.; Morrison, P.; Bengio, Y.; Abbasi, A.F.; Shen, B.; Mahsa, H.K.; Ghassemi, M.; Li, H.; et al. “Predicting covid-19 pneumonia severity on chest x-ray with deep learning”. Cureus 2020, 12. https://doi.org/10.7759/cureus.9448

Zhu, J.S.; Ge, P.; Jiang, C.; Zhang, Y.; Li, X.; Zhao, Z.; Zhang, L.; Duong, T.Q. “Deep-learning artificial intelligence analysis of clinical variables predicts mortality in COVID-19 patients”. Journal of the American College of Emergency Physicians Open 2020, 1, 1364–1373. https://doi.org/10.1002/emp2.12205

Kaur, M.; Kaur, J.; Kaur, J. “Survey of contrast enhancement techniques based on histogram equalization”. International Journal of Advanced Computer Science and Applications 2011, 2. https://doi.org/10.14569/IJACSA.2011.020721

Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. “Convolutional neural networks: an overview and application in radiology”. Insights into imaging 2018, 9, 611–629. https://doi.org/10.1007/s13244-018-0639-9

Badrinarayanan, V.; Kendall, A.; Cipolla, R. “Segnet: A deep convolutional encoder-decoder architecture for image segmentation”. IEEE transactions on pattern analysis and machine intelligence 2017, 39, 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

Soares, E.; Angelov, P.; Biaso, S.; Froes, M.H.; Abe, D.K. “SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification”. MedRxiv 2020, pp. 2020–04.

Hernandez-Sequeira, I.; Fernandez-Beltran, R.; Pla, F. “Transfer Deep Learning for Remote Sensing Datasets: A Comparison Study”. In Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022, pp. 3207–3210. https://doi.org/10.1109/IGARSS46834.2022.9884667

Ng, S.F.; Chew, Y.M.; Chng, P.E.; Ng, K.S. “An insight of linear regression analysis. Scientific Research Journal 2018, 15, 1–16. https://doi.org/10.24191/srj.v15i2.5477

Bharati, S.; Podder, P.; Mondal, M.R.H. “Hybrid deep learning for detecting lung diseases from X-ray images”. Informatics in Medicine Unlocked 2020, 20, 100391. https://doi.org/10.1016/j.imu.2020.100391

Liang, H.; Guo, Y.; Chen, X.; Ang, K.L.; He, Y.; Jiang, N.; Du, Q.; Zeng, Q.; Lu, L.; Gao, Z.; et al. “Artificial intelligence for stepwise diagnosis and monitoring of COVID-19”. European radiology 2022, pp. 1–11. https://doi.org/10.1007/s00330-021-08334-6

Zhu, X.; Song, B.; Shi, F.; Chen, Y.; Hu, R.; Gan, J.; Zhang, W.; Li, M.; Wang, L.; Gao, Y.; et al. “Joint prediction and time estimation of COVID-19 developing severe symptoms using chest CT scan”. Medical image analysis 2021, 67, 101824. https://doi.org/10.1016/j.media.2020.101824