Maintenance 4.0: Optimizing Asset Integrity and Reliability in Modern Manufacturing

Main Article Content

Dr. Attia Hussien Gomaa

Abstract

The reliability of critical assets is essential for operational success and long-term sustainability in modern manufacturing. Asset Integrity Management (AIM) ensures reliability, availability, maintainability, and safety (RAMS) while minimizing risks and costs. Industry 4.0 technologies—such as the Internet of Things (IoT), Artificial Intelligence (AI), and Big Data analytics—have revolutionized maintenance strategies, enabling real-time monitoring, predictive diagnostics, and data-driven decision-making. These advancements have transformed AIM, optimizing asset performance and operational efficiency. Maintenance 4.0 leverages these technologies to integrate predictive and preventive maintenance, enabling proactive repairs, reducing costly failures, and enhancing equipment reliability and productivity. This paper examines the impact of Maintenance 4.0 on AIM, focusing on the transition from reactive to intelligent, technology-driven maintenance solutions. It highlights the benefits of improved efficiency, optimized maintenance schedules, cost reduction, risk mitigation, and sustainability in the competitive manufacturing sector. Through a comprehensive literature review, this study identifies gaps in aligning traditional maintenance practices with emerging technologies and proposes a framework to address these challenges. By combining advanced digital technologies with established AIM principles, the research offers a strategic roadmap for optimizing asset integrity, achieving operational excellence, and fostering sustainable growth in modern manufacturing

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

[1]
Dr. Attia Hussien Gomaa , Tran., “Maintenance 4.0: Optimizing Asset Integrity and Reliability in Modern Manufacturing”, IJIES, vol. 12, no. 2, pp. 18–26, Feb. 2025, doi: 10.35940/ijies.B1098.12020225.
Share |

References

Gomaa, A.H., 2022. Enhancing maintenance management of critical equipment using digital twin. Comprehensive Research and Reviews in Engineering and Technology, (CRRET), 1(1), pp.45-55. https://crrjournals.com/crret/sites/default/files/CRRET-2022-0025.pdf

James, A.T., Kumar, G., Khan, A.Q. and Asjad, M., 2023. Maintenance 4.0: implementation challenges and its analysis. International Journal of Quality & Reliability Management, 40(7), pp.1706-1728. DOI: https://doi.org/10.1108/IJQRM-04-2021-0097

Cachada, A., Barbosa, J., Leitño, P., Gcraldcs, C.A., Deusdado, L., Costa, J., Teixeira, C., Teixeira, J., Moreira, A.H., Moreira, P.M. and Romero, L., 2018, September. Maintenance 4.0: Intelligent and predictive maintenance system architecture. In 2018 IEEE 23rd international conference on emerging technologies and factory automation (ETFA) (Vol. 1, pp. 139-146). IEEE. DOI: https://doi.org/10.1109/ETFA.2018.8502489

Lee, S.M., Lee, D. and Kim, Y.S., 2019. The quality management ecosystem for predictive maintenance in the Industry 4.0 era. International Journal of Quality Innovation, 5(1), p.4. DOI: https://link.springer.com/article/10.1186/s40887-019-0029-5

Câmara, R.A., Sâo Mamede, H. and dos Santos, V.D., 2019, October. Predictive industrial maintenance with a viable systems model and maintenance 4.0. In 2019 8th International Conference On Software Process Improvement (CIMPS) (pp. 1-8). IEEE. DOI: https://doi.org/10.1109/CIMPS49236.2019.9082435

Keleko, A.T., Kamsu-Foguem, B., Ngouna, R.H. and Tongne, A., 2022. Artificial intelligence and real-time predictive maintenance in industry 4.0: a bibliometric analysis. AI and Ethics, 2(4), pp.553-577. https://link.springer.com/article/10.1007/s43681-021-00132-6

Murtaza, A.A., Saher, A., Zafar, M.H., Moosavi, S.K.R., Aftab, M.F. and Sanfilippo, F., 2024. Paradigm shift for predictive maintenance and condition monitoring from Industry 4.0 to Industry 5.0: A systematic review, challenges and case study. Results in Engineering, p.102935. https://www.sciencedirect.com/science/article/pii/S2590123024011903

Ceruti, A., Marzocca, P., Liverani, A. and Bil, C., 2018. Maintenance in Aeronautics in an Industry 4.0 Context: the role of AR and AM. In Transdisciplinary Engineering Methods for Social Innovation of Industry 4.0 (pp. 43-52). IOS Press. DOI: https://doi.org/10.3233/978-1-61499-898-3-43

Zhang, W., Yang, D. and Wang, H., 2019. Data-driven methods for predictive maintenance of industrial equipment: A survey. IEEE systems journal, 13(3), pp.2213-2227. DOI: https://doi.org/10.1109/JSYST.2019.2905565

Çınar, Z.M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M. and Safaei, B., 2020. Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), p.8211. https://www.mdpi.com/2071-1050/12/19/8211

Tsakalerou, M., Nurmaganbetov, D. and Beltenov, N., 2022. Aircraft Maintenance 4.0 in an era of disruptions. Procedia computer science, 200, pp.121-131. https://www.sciencedirect.com/science/article/pii/S1877050922002204

Franciosi, C., Iung, B., Miranda, S. and Riemma, S., 2018. Maintenance for sustainability in the industry 4.0 context: A scoping literature review. IFAC-PapersOnLine, 51(11), pp.903-908. https://www.sciencedirect.com/science/article/pii/S2405896318315866

Jasiulewicz-Kaczmarek, M. and Gola, A., 2019. Maintenance 4.0 technologies for sustainable manufacturing-an overview. IFAC-PapersOnLine, 52(10), pp.91-96. https://www.sciencedirect.com/science/article/pii/S2405896319308468?via%3Dihub

Jasiulewicz-Kaczmarek, M., 2024. Maintenance 4.0 Technologies for Sustainable Manufacturing. Applied Sciences, 14(16), p.7360. DOI: https://doi.org/10.3390/app14167360

Bousdekis, A., Apostolou, D. and Mentzas, G., 2019. Predictive maintenance in the 4th industrial revolution: Benefits, business opportunities, and managerial implications. IEEE engineering management review, 48(1), pp.57-62. DOI: https://doi.org/10.1109/EMR.2019.2958037

Tortorella, G.L., Fogliatto, F.S., Cauchick-Miguel, P.A., Kurnia, S. and Jurburg, D., 2021. Integration of industry 4.0 technologies into total productive maintenance practices. International Journal of Production Economics, 240, p.108224. DOI: https://doi.org/10.1016/j.ijpe.2021.108224

Pech, M., Vrchota, J. and Bednář, J., 2021. Predictive maintenance and intelligent sensors in smart factory. Sensors, 21(4), p.1470. DOI: https://doi.org/10.3390/s21041470

Moeuf, A., Lamouri, S., Pellerin, R., Tamayo-Giraldo, S., Tobon-Valencia, E. and Eburdy, R., 2020. Identification of critical success factors, risks and opportunities of Industry 4.0 in SMEs. International Journal of Production Research, 58(5), pp.1384-1400. DOI: https://doi.org/10.1080/00207543.2019.1636323

Jasiulewicz-Kaczmarek, M., Antosz, K., Zhang, C. and Waszkowski, R., 2022. Assessing the barriers to industry 4.0 implementation from a maintenance management perspective-pilot study results. IFAC-PapersOnLine, 55(2), pp.223-228. https://www.sciencedirect.com/science/article/pii/S2405896322001987

Dyba, W. and De Marchi, V., 2022. On the road to Industry 4.0 in manufacturing clusters: the role of business support organisations. Competitiveness Review: An International Business Journal, 32(5), pp.760-776. DOI: https://doi.org/10.1108/CR-09-2021-0126

Silvestri, L., Forcina, A., Introna, V., Santolamazza, A. and Cesarotti, V., 2020. Maintenance transformation through Industry 4.0 technologies: A systematic literature review. Computers in industry, 123, p.103335. DOI: https://doi.org/10.1016/j.compind.2020.103335

Metso, L. and Thenent, N.E., 2020. Characteristics of Maintenance 4.0 and their reflection in aircraft engine MRO. In Advances in Asset Management and Condition Monitoring: COMADEM 2019 (pp. 499-509). Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-030-57745-2_42

Taş, Ü., 2024. Advancing predictive maintenance: a comprehensive case study through industry 4.0. International Journal of Automotive Engineering and Technologies, 13(3), pp.133-142. DOI: https://doi.org/10.18245/ijaet.1543509

Giacotto, A., Costa Marques, H., Pereira Barreto, E.A. and Martinetti, A., 2021. The need for ecosystem 4.0 to support maintenance 4.0: An aviation assembly line case. Applied Sciences, 11(8), p.3333. DOI: https://doi.org/10.3390/app11083333

Ghobakhloo, M., Iranmanesh, M., Vilkas, M., Grybauskas, A. and Amran, A., 2022. Drivers and barriers of industry 4.0 technology adoption among manufacturing SMEs: a systematic review and transformation roadmap. Journal of Manufacturing Technology Management, 33(6), pp.1029-1058. DOI: https://doi.org/10.1108/JMTM-12-2021-0505

Giliyana, S., Salonen, A. and Bengtsson, M., 2024. A Conceptual Implementation Process for Smart Maintenance Technologies. In Advances in Asset Management: Strategies, Technologies, and Industry Applications (pp. 61-84). Cham: Springer Nature Switzerland. https://link.springer.com/chapter/10.1007/978-3-031-52391-5_3

Hlihel, F.B., Chater, Y. and Boumane, A., 2022, March. Maintenance 4.0 Employees' Competencies: Systematic Literature Review. In 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) (pp. 1-14). IEEE. https://ieeexplore.ieee.org/abstract/document/9737840

Werbińska-Wojciechowska, S. and Winiarska, K., 2023. Maintenance performance in the age of Industry 4.0: A bibliometric performance analysis and a systematic literature review. Sensors, 23(3), p.1409. DOI: https://doi.org/10.3390/s23031409

Adu-Amankwa, K., Attia, A.K., Janardhanan, M.N. and Patel, I., 2019. A predictive maintenance cost model for CNC SMEs in the era of industry 4.0. The International Journal of Advanced Manufacturing Technology, 104, pp.3567-3587. https://link.springer.com/article/10.1007/s00170-019-04094-2

Navas, M.A., Sancho, C. and Carpio, J., 2020. Disruptive maintenance engineering 4.0. International Journal of Quality & Reliability Management, 37(6/7), pp.853-871. DOI: https://doi.org/10.1108/IJQRM-09-2019-0304

Zonta, T., Da Costa, C.A., da Rosa Righi, R., de Lima, M.J., da Trindade, E.S. and Li, G.P., 2020. Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, p.106889. DOI: https://doi.org/10.1016/j.cie.2020.106889

Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J. and Barbosa, J., 2020. Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. Computers in Industry, 123, p.103298. DOI: https://doi.org/10.1016/j.compind.2020.103298

Lee, J., Ni, J., Singh, J., Jiang, B., Azamfar, M. and Feng, J., 2020. Intelligent maintenance systems and predictive manufacturing. Journal of Manufacturing Science and Engineering, 142(11), p.110805. DOI: https://doi.org/10.1115/1.4047856

Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A. and De Felice, F., 2020. Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions. Sustainability, 12(2), p.492. DOI: https://doi.org/10.3390/su12020492

Nardo, M.D., Madonna, M., Addonizio, P. and Gallab, M., 2021. A mapping analysis of maintenance in Industry 4.0. Journal of applied research and technology, 19(6), pp.653-675. DOI: https://doi.org/10.22201/icat.24486736e.2021.19.6.1460

Nordal, H. and El‐Thalji, I., 2021. Modeling a predictive maintenance management architecture to meet industry 4.0 requirements: A case study. Systems Engineering, 24(1), pp.34-50. DOI: https://doi.org/10.1002/sys.21565

Jasiulewicz-Kaczmarek, M. and Antosz, K., 2022, June. Industry 4.0 technologies for maintenance management–an overview. In International Conference Innovation in Engineering (pp. 68-79). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-09382-1_7

Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H. and Adda, M., 2022. On predictive maintenance in industry 4.0: Overview, models, and challenges. Applied Sciences, 12(16), p.8081. DOI: https://doi.org/10.3390/app12168081

Pinciroli, L., Baraldi, P. and Zio, E., 2023. Maintenance optimization in industry 4.0. Reliability Engineering & System Safety, 234, p.109204. DOI: https://doi.org/10.1016/j.ress.2023.109204

Rai, A., shastri, J. and Bansal, H., 2024. Artificial Intelligence Techniques in Predictive Maintenance, Their Applications, Challenges, and Prospects. Artificial Intelligence‐Enabled Digital Twin for Smart Manufacturing, pp.565-579. DOI: https://doi.org/10.1002/9781394303601.ch24

Mabaso, M., Peach, R. and Pretorius, L., 2024, August. Determining Maintenance 4.0 Readiness: A Case Study of a South African Food Manufacturing Company. In 2024 Portland International Conference on Management of Engineering and Technology (PICMET) (pp. 1-10). IEEE. DOI: https://doi.org/10.23919/PICMET64035.2024.10653242

Gomaa, A.H., 2024. Enhancing proactive maintenance of critical equipment by integrating digital twins and lean six sigma approaches. International Journal of Modern Studies in Mechanical Engineering (IJMSME) Volume 10, Issue 1, 2024, PP 20-35. https://www.researchgate.net/publication/386347178_Enhancing_Proactive_Maintenance_of_Critical_Equipment_by_Integrating_Digital_Twins_and_Lean_Six_Sigma_Approaches

Most read articles by the same author(s)

<< < 1 2 3 4 > >>