Impact Mechanics of Thin Metal Plates Using Lagrangian, CEL and SPH Methods

Main Article Content

Mahendher Marri
Dr. Rehan Ahmed

Abstract

This paper aimed to evaluate the ballistic limit for high-speed perpendicular and oblique impacts on thin aluminium alloy (AA6061-T651, Al5052) plates. Finite Element Analysis (FEA) was conducted on a commercially available software, Abaqus/Explicit®. The impact velocities in the model ranged from 100 m/s to 1000 m/s. Three distinctive modelling techniques were compared for simulating high-speed impacts, i.e., Smoothed Particle Hydrodynamics (SPH), Coupled Eulerian and Lagrangian (CEL) and Lagrangian. This investigation considered two different projectile shapes, i.e., conical and blunt. Plate thickness varied as 16, 20, and 26.3mm using the Lagrangian analysis. The influence of the physical properties of projectiles was analysed by comparing deformable and analytically rigid projectiles. The results of this study showed a good agreement with published data (experimental and FEA) for the Lagrangian model for both perpendicular and oblique impacts. The CEL method overestimated the ballistic limit, whereas the SPH model slightly underestimated the ballistic limit. The accuracy of the SPH model was velocity dependent, with a % error ranging from 3% (higher velocity) to 21% (lower velocity). The CEL model also showed velocity-dependent accuracy. The CEL model showed the highest percentage of energy absorption during contact interaction at the ballistic limit for perpendicular conical impacts. In contrast, Lagrangian and SPH models showed very similar energy absorption results for the blunt projectiles regardless of the impact angle. Changing the deformable projectile to analytical rigid varied the velocity-dependent % error from 2 to 38%.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Mahendher Marri and Dr. Rehan Ahmed , Trans., “Impact Mechanics of Thin Metal Plates Using Lagrangian, CEL and SPH Methods”, IJEAT, vol. 13, no. 6, pp. 22–36, Aug. 2024, doi: 10.35940/ijeat.F4528.13060824.
Section
Articles

How to Cite

[1]
Mahendher Marri and Dr. Rehan Ahmed , Trans., “Impact Mechanics of Thin Metal Plates Using Lagrangian, CEL and SPH Methods”, IJEAT, vol. 13, no. 6, pp. 22–36, Aug. 2024, doi: 10.35940/ijeat.F4528.13060824.
Share |

References

S. Shasthri and V. Kausalyah, "Effect of ballistic impact on Ti6Al-4V titanium alloy and 1070 carbon steel bi-layer armour panel," International journal of structural integrity, vol. 11, no. 4, pp. 557-565, 2020, doi: 10.1108/IJSI-09-2019-0095. https://doi.org/10.1108/IJSI-09-2019-0095

F. Xiaowei Chen Qingming Li Saucheong, "Oblique perforation of thick metallic plates by rigid projectiles," Acta mechanica Sinica, vol. 22, no. 4, pp. 367-376, 2006, doi: 10.1007/s10409-006-0015-8. https://doi.org/10.1007/s10409-006-0015-8

Y. Zhou, Y. Sun, and T. Huang, "SPH-FEM Design of Laminated Plies under Bird-Strike Impact," Aerospace, vol. 6, no. 10, p. 112, 2019. https://doi.org/10.3390/aerospace6100112

P. R. Gradl and W. Stephens, "Space Shuttle Main Engine Debris Testing Methodology and Impact Tolerances," ed, 2005. https://doi.org/10.2514/6.2005-3628

J. Gabrys, K. Carney, E. L. Fasanella, M. Melis, and K. H. Lyle, "Test and Analysis Correlation of Form Impact onto Space Shuttle Wing Leading Edge RCC Panel 8," ed, 2004.

C. A. Myhre, S. R. Best, and R. J. Christie, "Hypervelocity Impact Testing of Space Station Freedom Solar Cells," ed, 1994.

A. Fardan and R. Ahmed, "Modeling the Evolution of Residual Stresses in Thermally Sprayed YSZ Coating on Stainless Steel Substrate," 2019. https://doi.org/10.1007/s11666-019-00856-2

D. Systems. "Simulation of the ballistic perforation of aluminum plates with Abaqus/Explicit." https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/SIMULIA/RESOURCES/aero-ballistic-perforation-alumnium-plates-12.pdf (accessed 22 September, 2020).

P. Liu, Y. Liu, and X. Zhang, "Improved shielding structure with double honeycomb cores for hyper-velocity impact," Mechanics research communications, vol. 69, pp. 34-39, 2015, doi: 10.1016/j.mechrescom.2015.06.003. https://doi.org/10.1016/j.mechrescom.2015.06.003

A. Dorogoy, D. Rittel, and D. Weihs, "Effect of target velocity on damage patterns in hypervelocity glancing collisions," International Journal of Impact Engineering, vol. 144, p. 103664, 2020/10/01/ 2020, doi: https://doi.org/10.1016/j.ijimpeng.2020.103664.

X. Zhang, T. Liu, X. Li, and G. Jia, "Hypervelocity impact performance of aluminum egg-box panel enhanced Whipple shield," Acta astronautica, vol. 119, pp. 48-59, 2016, doi: 10.1016/j.actaastro.2015.10.013. https://doi.org/10.1016/j.actaastro.2015.10.013

P. Liu, Y. Liu, X. Zhang, and Y. Guan, "Investigation on high-velocity impact of micron particles using material point method," International journal of impact engineering, vol. 75, pp. 241-254, 2015, doi: 10.1016/j.ijimpeng.2014.09.001. https://doi.org/10.1016/j.ijimpeng.2014.09.001

M. Rodriguez-Millan, D. Garcia-Gonzalez, A. Rusinek, F. Abed, and A. Arias, "Perforation mechanics of 2024 aluminium protective plates subjected to impact by different nose shapes of projectiles," Thin-walled structures, vol. 123, pp. 1-10, 2018, doi: 10.1016/j.tws.2017.11.004. https://doi.org/10.1016/j.tws.2017.11.004

T. Fras, L. Colard, E. Lach, A. Rusinek, and B. Reck, "Thick AA7020-T651 plates under ballistic impact of fragment-simulating projectiles," International journal of impact engineering, vol. 86, pp. 336-353, 2015, doi: 10.1016/j.ijimpeng.2015.08.001. https://doi.org/10.1016/j.ijimpeng.2015.08.001

M. A. Iqbal, K. Senthil, P. Bhargava, and N. K. Gupta, "The characterisation and ballistic evaluation of mild steel," International journal of impact engineering, vol. 78, pp. 98-113, 2015, doi: 10.1016/j.ijimpeng.2014.12.006. https://doi.org/10.1016/j.ijimpeng.2014.12.006

A. J. Piekutowski, M. J. Forrestal, K. L. Poormon, and T. L. Warren, "Perforation of aluminum plates with ogive-nose steel rods at normal and oblique impacts," International journal of impact engineering, vol. 18, no. 7-8, pp. 877-887, 1996, doi: 10.1016/s0734-743x(96)00011-5. https://doi.org/10.1016/S0734-743X(96)00011-5

I. Smojver and D. Ivančević, "Bird strike damage analysis in aircraft structures using Abaqus/Explicit and coupled Eulerian Lagrangian approach," Composites science and technology, vol. 71, no. 4, pp. 489-498, 2011, doi: 10.1016/j.compscitech.2010.12.024. https://doi.org/10.1016/j.compscitech.2010.12.024

M. Murugesan and D. Jung, "Johnson Cook Material and Failure Model Parameters Estimation of AISI-1045 Medium Carbon Steel for Metal Forming Applications," Materials, vol. 12, no. 4, p. 609, 2019, doi: 10.3390/ma12040609. https://doi.org/10.3390/ma12040609

A. Banerjee, S. Dhar, S. Acharyya, D. Datta, and N. Nayak, "Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel," Materials science & engineering. A, Structural materials : properties, microstructure and processing, vol. 640, pp. 200-209, 2015, doi: 10.1016/j.msea.2015.05.073. https://doi.org/10.1016/j.msea.2015.05.073

A. F. Johnson, A. K. Pickett, and P. Rozycki, "Computational methods for predicting impact damage in composite structures," Composites science and technology, vol. 61, no. 15, pp. 2183-2192, 2001, doi: 10.1016/S0266-3538(01)00111-7. https://doi.org/10.1016/S0266-3538(01)00111-7

J. Jovicic, A. Zavaliangos, and F. Ko, "Modeling of the ballistic behavior of gradient design composite armors," Composites. Part A, Applied science and manufacturing, vol. 31, no. 8, pp. 773-784, 2000, doi: 10.1016/s1359-835x(00)00028-2. https://doi.org/10.1016/S1359-835X(00)00028-2

X. Chen, Y. Peng, S. Peng, S. Yao, C. Chen, and P. Xu, "Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities," PloS one, vol. 12, no. 7, p. e0181983, 2017, doi: 10.1371/journal.pone.0181983. https://doi.org/10.1371/journal.pone.0181983

D. C. Hofmann, L. Hamill, E. Christiansen, and S. Nutt, "Hypervelocity Impact Testing of a Metallic Glass-Stuffed Whipple Shield," Advanced engineering materials, vol. 17, no. 9, pp. 1313-1322, 2015, doi: 10.1002/adem.201400518. https://doi.org/10.1002/adem.201400518

S. Signetti, F. Bosia, S. Ryu, and N. M. Pugno, "A combined experimental/numerical study on the scaling of impact strength and toughness in composite laminates for ballistic applications," Composites. Part B, Engineering, vol. 195, p. 108090, 2020, doi: 10.1016/j.compositesb.2020.108090. https://doi.org/10.1016/j.compositesb.2020.108090

G. R. Johnson and W. H. Cook, "Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures," Engineering fracture mechanics, vol. 21, no. 1, pp. 31-48, 1985. https://doi.org/10.1016/0013-7944(85)90052-9

M. B. Liu and G. R. Liu, "Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments," Archives of computational methods in engineering state of the art reviews., vol. 17, no. 1, pp. 25-76, 2010, doi: 10.1007/s11831-010-9040-7. https://doi.org/10.1007/s11831-010-9040-7

M. Rodríguez-Millán, A. Vaz-Romero, A. Rusinek, J. A. Rodríguez-Martínez, and A. Arias, "Experimental Study on the Perforation Process of 5754-H111 and 6082-T6 Aluminium Plates Subjected to Normal Impact by Conical, Hemispherical and Blunt Projectiles," Experimental mechanics, vol. 54, no. 5, pp. 729-742, 2014, doi: 10.1007/s11340-013-9829-z. https://doi.org/10.1007/s11340-013-9829-z

D. Palmieri, M. Faraud, R. Destefanis, and M. Marchetti, "Whipple shield ballistic limit at impact velocities higher than 7 km/s," International journal of impact engineering, vol. 26, no. 1, pp. 579-590, 2001, doi: 10.1016/S0734-743X(01)00118-X. https://doi.org/10.1016/S0734-743X(01)00118-X

A. Nuttall and S. Close, "A thermodynamic analysis of hypervelocity impacts on metals," International journal of impact engineering, vol. 144, no. C, p. 103645, 2020, doi: 10.1016/j.ijimpeng.2020.103645. https://doi.org/10.1016/j.ijimpeng.2020.103645

T. Børvik, L. Olovsson, S. Dey, and M. Langseth, "Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates," International journal of impact engineering, vol. 38, no. 7, pp. 577-589, 2011, doi: 10.1016/j.ijimpeng.2011.02.001. https://doi.org/10.1016/j.ijimpeng.2011.02.001

J.-H. Cha, Y. Kim, S. K. Sathish Kumar, C. Choi, and C.-G. Kim, "Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures," Acta Astronautica, vol. 168, pp. 182-190, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.actaastro.2019.12.008.

W. Schonberg, F. Schäfer, and R. Putzar, "Hypervelocity impact response of honeycomb sandwich panels," Acta astronautica, vol. 66, no. 3-4, pp. 455-466, 2010, doi: 10.1016/j.actaastro.2009.06.018.

P. Liu, Y. Liu, and X. Zhang, "Internal-structure-model based simulation research of shielding properties of honeycomb sandwich panel subjected to high-velocity impact," International journal of impact engineering, vol. 77, pp. 120-133, 2015, doi: 10.1016/j.ijimpeng.2014.11.004.

J. M. Sibeaud, L. Thamié, and C. Puillet, "Hypervelocity impact on honeycomb target structures: Experiments and modeling," International journal of impact engineering, vol. 35, no. 12, pp. 1799-1807, 2008, doi: 10.1016/j.ijimpeng.2008.07.037. https://doi.org/10.1016/j.ijimpeng.2008.07.037

A. Fardan, C. C. Berndt, and R. Ahmed, "Numerical modelling of particle impact and residual stresses in cold sprayed coatings: A review," Surface & coatings technology, vol. 409, p. 126835, 2021, doi: 10.1016/j.surfcoat.2021.126835. https://doi.org/10.1016/j.surfcoat.2021.126835

S. Jeong and K. Lee, "Analysis of the impact force of debris flows on a check dam by using a coupled Eulerian-Lagrangian (CEL) method," Computers and geotechnics., vol. 116, p. 103214, 2019, doi: 10.1016/j.compgeo.2019.103214. https://doi.org/10.1016/j.compgeo.2019.103214

P. Benson. "Eulerian Analysis." https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-euleriananalysis.htm (accessed 2021).

[38] ABAQUS/Explicit. "Eulerian Analysis." https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-euleriananalysis.htm#simaanl-c-aeuleriananal-bc (accessed 2021).

S. Heimbs, "Computational methods for bird strike simulations: A review," Computers & structures, vol. 89, no. 23-24, pp. 2093-2112, 2011, doi: 10.1016/j.compstruc.2011.08.007. https://doi.org/10.1016/j.compstruc.2011.08.007

G. Qiu, S. Henke, and J. Grabe, "Application of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations," Computers and geotechnics., vol. 38, no. 1, pp. 30-39, 2011, doi: 10.1016/j.compgeo.2010.09.002. https://doi.org/10.1016/j.compgeo.2010.09.002

S. Subramaniam, "Lagrangian–Eulerian methods for multiphase flows," Progress in energy and combustion science, vol. 39, no. 2-3, pp. 215-245, 2013, doi: 10.1016/j.pecs.2012.10.003. https://doi.org/10.1016/j.pecs.2012.10.003

G. R. Johnson, "A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures," Proc. 7th Inf. Sympo. Ballistics, pp. 541-547, 1983.

Abaqus/Explicit, "Smoothed particle hydrodynamics," ed.

ABAQUS/Explicit. "SPH." https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-sphconversion.htm (accessed 2021).

L. B. Lucy, "A numerical approach to the testing of the fission hypothesis," The astronomical journal, vol. 82, pp. 1013-1024, 1977. https://doi.org/10.1086/112164

R. A. Gingold and J. J. Monaghan, "Smoothed particle hydrodynamics: theory and application to non-spherical stars," Monthly notices of the royal astronomical society, vol. 181, no. 3, pp. 375-389, 1977. https://doi.org/10.1093/mnras/181.3.375

F. Chaari, Advances in materials, mechanics and manufacturing : proceedings of the second International Conference on Advanced Materials, Mechanics and Manufacturing (A3M'2018), December 17-19, 2018 Hammamet, Tunisia / Fakher Chaari [and six others] editors, 1st ed. 2020. ed. Cham, Switzerland : Springer, 2020.

B. L. Buitrago, C. Santiuste, S. Sánchez-Sáez, E. Barbero, and C. Navarro, "Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact," Composite structures, vol. 92, no. 9, pp. 2090-2096, 2010, doi: 10.1016/j.compstruct.2009.10.013. https://doi.org/10.1016/j.compstruct.2009.10.013

R. Scazzosi, A. Manes, and M. Giglio, "An Enhanced Material Model for the Simulation of High-Velocity Impact on Fiber-Reinforced Composites," Procedia Structural Integrity, vol. 24, pp. 53-65, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.prostr.2020.02.005.

M. Steffen, R. M. Kirby, and M. Berzins, "Analysis and reduction of quadrature errors in the material point method (MPM)," International journal for numerical methods in engineering, vol. 76, no. 6, pp. 922-948, 2008, doi: 10.1002/nme.2360. https://doi.org/10.1002/nme.2360

Y. Y. Lu, T. Belytschko, and L. Gu, "A new implementation of the element free Galerkin method," Computer Methods in Applied Mechanics and Engineering, vol. 113, no. 3, pp. 397-414, 1994/03/01/ 1994, doi: https://doi.org/10.1016/0045-7825(94)90056-6.

S. Ren, P. Zhang, Y. Zhao, X. Tian, and S. A. Galindo-Torres, "A coupled metaball discrete element material point method for fluid–particle interactions with free surface flows and irregular shape particles," Computer methods in applied mechanics and engineering, vol. 417, p. 116440, 2023, doi: 10.1016/j.cma.2023.116440. https://doi.org/10.1016/j.cma.2023.116440

T. Strouboulis, I. Babuška, and K. Copps, "The design and analysis of the Generalized Finite Element Method," Computer methods in applied mechanics and engineering, vol. 181, no. 1, pp. 43-69, 2000, doi: 10.1016/S0045-7825(99)00072-9. https://doi.org/10.1016/S0045-7825(99)00072-9

M. Cremonesi, A. Franci, S. Idelsohn, and E. Oñate, "A State of the Art Review of the Particle Finite Element Method (PFEM)," Archives of computational methods in engineering, vol. 27, no. 5, pp. 1709-1735, 2020, doi: 10.1007/s11831-020-09468-4. https://doi.org/10.1007/s11831-020-09468-4

A. Larese, R. Rossi, E. Oñate, and S. R. Idelsohn, "Validation of the particle finite element method (PFEM) for simulation of free surface flows," Engineering computations, vol. 25, no. 4, pp. 385-425, 2008, doi: 10.1108/02644400810874976. https://doi.org/10.1108/02644400810874976

J. Xie, D. Nélias, H. Walter-Le Berre, K. Ogawa, and Y. Ichikawa, "Simulation of the Cold Spray Particle Deposition Process," Journal of Tribology, vol. 137, no. 4, 2015, doi: 10.1115/1.4030257. https://doi.org/10.1115/1.4030257

S. Rahmati and B. Jodoin, "Physically Based Finite Element Modeling Method to Predict Metallic Bonding in Cold Spray," Journal of Thermal Spray Technology, vol. 29, no. 4, pp. 611-629, 2020/04/01 2020, doi: 10.1007/s11666-020-01000-1. https://doi.org/10.1007/s11666-020-01000-1

A. A. Hemeda et al., "Particle-based simulation of cold spray: Influence of oxide layer on impact process," Additive manufacturing, vol. 37, p. 101517, 2021, doi: 10.1016/j.addma.2020.101517. https://doi.org/10.1016/j.addma.2020.101517

A. Baluch, Y. Park, and C. G. Kim, "High velocity impact characterisation of Al alloys for oblique impacts," Acta astronautica, vol. 105, no. 1, pp. 128-135, 2014, doi: 10.1016/j.actaastro.2014.08.014. https://doi.org/10.1016/j.actaastro.2014.08.014

B. O'Toole et al., "Modeling Plastic Deformation of Steel Plates in Hypervelocity Impact Experiments," Procedia Engineering, vol. 103, pp. 458-465, 2015/01/01/ 2015, doi: https://doi.org/10.1016/j.proeng.2015.04.060

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>