Mechanical Properties of Hardened Geopolymer Concrete Mixes Including Nano Particles: A Comprehensive Review

Main Article Content

Mostafa Hassan

Abstract

The increase in global warming due to CO2 emissions from cement production is a critical problem, considering climate change these days. The alternative binder, instead of cement in the production of concrete, is to find a material that has the same chemical properties, is cost-effective, and is more sustainable than ordinary Portland cement, to mitigate the harmful CO2 impact on the environment and human beings. The primary objective of this research is to investigate the mechanical properties of various sustainable precursor-based geopolymer concrete (GPC) mixes, including those incorporating nanoparticles, in comparison to GPC without nanoparticles. This study aims to demonstrate a significant enhancement in the mechanical properties and durability of GPC, based on research conducted in this field. Different precursors were used in the production of GPC, including fly ash, metakaolin (MK), ground granulated blast furnace slag, and silica fume, which are the primary sources of alumina and silica. The nanoparticles used in GPC mixes are silica nanoparticles, carbon nanotubes, clay nanoparticles, alumina nanoparticles, and graphene oxide nanoparticles, each separately, to enhance the mechanical properties in different precursor-based GPC mixes. Moreover, the mechanical properties of hardened GPC, including nanoparticles, will provide compressive strength, tensile strength, and splitting tensile strength, among others. An optimum percentage of 0.35% nano graphene oxide and 2% carbon nanotubes, separately added to FA-based GPC, enhances the mechanical properties of GPC. The maximum limit for nano alumina is up to 3% for FA-based GPC, after which the mechanical strength will decline significantly. Furthermore, the maximum limit of carbon nanotubes is 2% in FA-based GPC, and then the strength will be reduced.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

[1]
Mostafa Hassan , Tran., “Mechanical Properties of Hardened Geopolymer Concrete Mixes Including Nano Particles: A Comprehensive Review”, IJRTE, vol. 14, no. 3, pp. 30–37, Sep. 2025, doi: 10.35940/ijrte.D8299.14030925.
Share |

References

Hassan, M., Amleh, L., and Othman. (2022). Effect of Different Cement Contents and Water-Cement Ratios on Carbonation Depth and Probability of Carbonation-Induced Corrosion in Concrete. Cement-Wapno-Beton = Cement Lime Concrete, (Vol. 27, Issue- 2, pp.126-143) https://doi.org/10.32047/cwb.2022.27.2.4

Hassan, M., Amleh, L. (2024). Influence of Climate Change on Probability of Carbonation-Induced Corrosion Initiation, Periodica Polytechnica Civil Engineering (Vol. 68, Issue-1, pp. 57–67) https://doi.org/10.3311/PPci.22101

Hassan, M., Amleh, L., Hussein, L.(2024). Projection of the Carbonation Depths and their Probability of Corrosion Initiation for the Uncracked and Cracked Concrete. International Review of Civil Engineering (Vol. 15, Issue-5, pp.381-398) https://doi.org/10.15866/irece.v15i5.24986

Assan, M., Amleh, L. (2025). Influence of Various Crack Widths in RC Bridge Decks on the Initiation of Chloride-Induced Corrosion. Journal of Composites Science (Vol. 9, 242) https://doi.org/10.3390/jcs9050242

Hassaan, M.; M.I. Elmasry; and N.E. Ashkar. (2021). Detection of Cracks in Heavy-Weight Concrete Using the Inner Electrical Resistivity Method. Saudi Journal of Civil Engineering (Vol 5, Issue 9, pp. 355-366). DOI: https://doi.org/10.36348/sjce.2021.v05i09.004

Hassaan, M.; M.I. Elmasry; and N.E. Ashkar. (2021). Effect of Impact Boeing 707-320 on External RC Containment of Nuclear Power Plant for Different Compressive Strength of Concrete. Saudi Journal of Civil Engineering (Vol 5, Issue 8, pp.282-304).

DOI: https://doi.org/10.36348/sjce.2021.v05i08.004

Hassaan, M.; M.I. Elmasry; and N.E. Ashkar. (2021). Structural Health Monitoring for Reinforced Concrete Containment Using Inner Electrical Resistivity Method. Open Journal of Civil Engineering (Vol. 11, Issue 3, pp.317-341). DOI: https://doi.org/10.4236/ojce.2021.113019

Tanyildizi, H. (2021). Predicting the geopolymerization process of fly ash-based geopolymer using deep long short-term memory and machine learning: Cement and Concrete Composites, (Vol. 123, 104177).

DOI: https://doi.org/10.1016/J.CEMCONCOMP.2021.104177.

Ikotun, J.O., Aderinto, G.E., Madirisha, M.M., Katte, V.Y. (2024). Geopolymer cement in pavement applications: Bridging sustainability and performance. Sustainability (Vol. 16, Issue-13, 5417). DOI: https://doi.org/10.3390/su16135417

Singh, N., Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials (Vol. 237, 117455). DOI: https://doi.org/10.1016/j.conbuildmat.2019.117455

Kakria, K., Thirumalini, S., Secco, M., Priya, T.S. (2020). A novel approach for the development of sustainable hybridized geopolymer mortar from waste printed circuit boards. Resources, Conservation, and Recycling (Vol. 163, 105066).

DOI: https://doi.org/10.1016/j.resconrec.2020.105066

Shah, S.N., Mo, K.H., Yap, S.P., Yang, J., Ling, T.C. (2021). Lightweight foamed concrete as a promising avenue for incorporating waste materials: A review. Resources, Conservation, and Recycling (Vol. 164, 105103).

DOI: https://doi.org/10.1016/j.resconrec.2020.105103

Amran, Y.M., Alyousef, R., Alabduljabbar, H., El-Zeadani, M. (2020). Clean Production and Properties of Geopolymer Concrete: A Review. Journal of Cleaner Production (Vol. 251, 119679). DOI: https://doi.org/10.1016/j.jclepro.2019.119679

Xu, G., Shi, X. (2018). Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. Resources, Conservation, and Recycling (Vol. 136, pp.95–109). DOI: https://doi.org/10.1016/j.resconrec.2018.04.010

Manzoor, T., Bhat, J.A., Shah, A.H. (2024). Performance of geopolymer concrete at elevated temperature − A critical review. Construction and Building Materials (Vol. 420). DOI: https://doi:10.1016/j.conbuildmat.2024.135578

Almutairi, A.L., Tayeh, B.A., Adesina, A., Isleem, H.F., Zeyad, A.M. (2021). Potential Applications of Geopolymer Concrete in Construction: A Review. Case Studies in Construction Materials (Vol. 15, e00733, ISSN 2214-5095). DOI: https://doi.org/10.1016/j.cscm.2021.e00733.

Amleh, L., Hassan, M., Hussein, L. (2024). Influence of Climate Change on the Probability of Chloride-Induced Corrosion Initiation for RC Bridge Decks Made of Geopolymer Concrete. Sustainability (Vol. 16, 8200). DOI: https://doi.org/10.3390/su16188200

Zhu, L., Zha, X. (2023). Latest Progress of Mechanical Properties of Geopolymer Concrete at Elevated Temperature. Journal of Physics: Conference Series (Vol. 2468, 012017). DOI: https://doi.org/10.1088/1742-6596/2468/1/012017

Wasim, M., Roychand, R., Barnes, R.T., Talevski, J., Law, D., Li, J., Saberian, M. (2023). Performance of Reinforced Foam and Geopolymer Concretes against Prolonged Exposures to Chloride in a Normal Environment. Materials (Vol. 16, 149).

DOI: https://doi.org/10.3390/ma16010149

Oyebisi, S., Olutoge, F., Parthiban K., Oyaotuderekumor, I., Lawanson, D., Nwani, J., Ede, A., Kaze, R. (2022). Sustainability Assessment of Geopolymer Concrete Synthesised from Slag and Corncob Ash. Case Studies in Construction Materials (Vol. 17, e01665).

DOI: https://doi.org/10.1016/j.cscm.2022.e01665.

Shehata, N., Mohamed, O.A., Sayed, E.T., Abdelkareem, M.A., Olabi, A.G. (2022). Geopolymer concrete as green building materials: Recent applications. Sustainable development and circular economy potentials. Science of The Total Environment (Vol. 836, 155577).

DOI: https://doi.org/10.1016/j.scitotenv.2022.155577.

Amran, M., Debbarma, S., Ozbakkaloglu, T. (2021). Fly Ash-Based Eco-Friendly Geopolymer Concrete: A Critical Review of Its Long-Term Durability Properties—Construction and Building Materials (Vol. 270, Issue 8).

DOI: https://doi.org/10.1016/j.conbuildmat.2020.121857.

Özkılıç, Y.O., Çelik, A.İ., Tunç, U., Karalar, M., Deifalla, A., Alomayri, T., Althoey, F. (2023). The use of crushed recycled glass for alkali-activated fly ash-based geopolymer concrete and the prediction of its capacity—Journal of Materials Research and Technology (Vol. 24, pp.8267-8281). DOI: https://doi.org/10.1016/j.jmrt.2023.05.079.

Çelik, A.İ., Özkılıç, Y.O., Bahrami, A., Hakeem, I. (2023). Mechanical performance of geopolymer concrete with micro silica fume and waste steel lathe scraps. Case Studies in Construction Materials (Vol. 19, Issue-1). DOI: https://doi.org/10.1016/j.cscm.2023.e02548.

Gupta, N., Gupta, A., Saxena, K.K., Shukla, A., Goyal, S.K. (2021). Mechanical and durability properties of geopolymer concrete composite at varying superplasticizer dosage. Materials Today: Proceedings (Vol. 44, Issue-1, pp.12-16, ISSN 2214-7853).

DOI: https://doi.org/10.1016/j.matpr.2020.05.646.

Ramujee, K., PothaRaju, M. (2017). Mechanical Properties of Geopolymer Concrete Composites Part A. Materials Today: Proceedings (Vol. 4, Issue- 2, pp.2937-2945, ISSN 2214-7853). DOI: https://doi.org/10.1016/j.matpr.2017.02.175.

Zhang, P., Sun, X., Wang, F., and Wang, J. (2023). Mechanical Properties and Durability of Geopolymer Recycled Aggregate Concrete: A Review. Polymers (Vol. 15, Issue-3, 615). DOI: https://doi.org/10.3390/polym15030615

Aslani, F. (2016). Thermal performance modelling of geopolymer concrete. Journal of Materials in Civil Engineering (Vol . 28, Issue 1, 04015062). DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001291.

Meesala, C.R., Verma, N.K., Kumar, S. (2020). Critical review of fly-ash-based geopolymer concrete. Structural Concrete (Vol. 21, Issue-3, pp. 1013–1028). DOI: https://doi.org/10.1002/suco.201900326

Nguyen, K.T., Ahn, N., Le, T.A., Lee, K. (2016). Theoretical and experimental study on mechanical properties and flexural strength of fly ash-geopolymer concrete—Construction and Building Materials (Vol. 106, pp. 65-77).

DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.033

Xu, Z., Huang, Z., Liu, C., Deng, H., Deng, X., Hui, D., Zhang, X., and Bai, Z. (2021). Research progress on key problems of nanomaterials-modified geopolymer concrete. Nanotechnology Reviews (Vol. 10, Issue-1, pp.779-792). DOI: https://doi.org/10.1515/ntrev-2021-0056.

Xu, Z., Long, H., Liu, Q., Yu, H., Zhang, X., Hui, D. (2023). Mechanical properties and durability of geopolymer concrete based on fly ash and coal gangue under different dosages and particle size of nano silica. Construction and Building Materials (Vol. 387, 131622, ISSN 0950-0618). DOI: https://doi.org/10.1016/j.conbuildmat.2023.131622

Szczepanik, B. (2017). Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Applied Clay Science (Vol. 141, pp.227-239, ISSN 0169-1317). DOI: https://doi.org/10.1016/j.clay.2017.02.029.

Ismael, R., Silva, J.V., Carmo, R.N.F., Soldado, E., Lourenço, C., Costa, H., Júlio, E. (2016). Influence of nano-SiO2 and nano-Al2O3 additions on steel-to-concrete bonding. Construction and Building Materials (Vol. 125, pp.1080-1092, ISSN 0950-0618).

DOI: https://doi.org/10.1016/j.conbuildmat.2016.08.152.

Bragança, M.O.G.P., Portella, K.F., Bonato, M.M., Alberti, E., Marino, C.E.B. (2016). Performance of Portland cement concretes with 1% nano-Fe3O4 addition: Electrochemical stability under chloride and sulfate environments. Construction and Building Materials, (Vol. 117, pp.152-162, ISSN 0950-0618). DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.033.

Kishore, K., Sheikh, M.N., Hadi, M.N.S. (2024). Doped multi-walled carbon nanotubes and nanoclay-based geopolymer concrete: An overview of current knowledge and future research challenges. Cement and Concrete Composites (Vol. 154, 105774, ISSN 0958-9465).

DOI: https://doi.org/10.1016/j.cemconcomp.2024.105774.

Naskar, S., Chakraborty, A.K. (2016). Effect of nano materials in geopolymer concrete, Perspectives in Science (Vol. 8, pp. 273-275, ISSN 2213-0209). DOI: https://doi.org/10.1016/j.pisc.2016.04.049.

Ahmed, H.U., Mohammed, A.S., Faraj, R.H., Qaidi, S.M.A., Mohammed, A.A. (2022). Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modelling investigations. Case Studies in Construction Materials (Vol. 16, e01036, ISSN 2214-5095). DOI: https://doi.org/10.1016/j.cscm.2022.e01036.

Rahmawati, C., Aprilia, S., Saidi, T., Aulia, T.B., Hadi, A.E. (2021). The Effects of Nanosilica on Mechanical Properties and Fracture Toughness of Geopolymer Cement. Polymers (Vol. 13, 2178). DOI: https://doi.org/10.3390/polym13132178.

Su, Z., Hou, W., Sun, Z. (2020). Recent advances in carbon nanotube-geopolymer composite. Construction and Building Materials Vol. 252, 118940, ISSN 0950-0618). DOI: https://doi.org/10.1016/j.conbuildmat.2020.118940.

Şimşek, B. (2020). Multi-walled carbon nanotubes with different features reinforced cement pastes: A compressive and systematic approach using principal component analysis. Journal of Building Engineering (Vol. 32, 101792, ISSN 2352-7102).

DOI: https://doi.org/10.1016/j.jobe.2020.101792.

Azeem, M., Junaid, M.T., Saleem, M.A. (2021). Correlated strength enhancement mechanisms in carbon nanotube-based geopolymer and OPC binders. Construction and Building Materials (Vol. 305, 124748, ISSN 0950-0618). DOI: https://doi.org/10.1016/j.conbuildmat.2021.124748.

Raj, R.S., Arulraj, G.P., Anand, N., Kanagaraj, B., Lubloy, E., Naser, M.Z. (2022). Nanomaterials in geopolymer composites: A review. Developments in the Built Environment (Vol. 13, 100114, ISSN 2666-1659). DOI: https://doi.org/10.1016/j.dibe.2022.100114.

Jittabut, P., Horpibulsuk, S. (2019). Physical and Microstructure Properties of Geopolymer Nanocomposite Reinforced with Carbon Nanotubes. Materials Today: Proceedings, (Vol. 17, Issue 4, pp.1682-1692, ISSN 2214-7853). DOI: https://doi.org/10.1016/j.matpr.2019.06.199.

Da Luz, G., Gleize, P.J.P., Batiston, E.R., Pelisser, F. (2019). Effect of pristine and functionalized carbon nanotubes on microstructural, rheological, and mechanical behaviours of metakaolin-based geopolymer. Cement and Concrete Composites (Vol. 104, 103332, ISSN 0958-9465). DOI: https://doi.org/10.1016/j.cemconcomp.2019.05.015.

Abbasi, S.M., Ahmadi, H., Khalaj, G., Ghasemi, B. (2016). Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes. Ceramics International (Vol. 42, Issue-14, pp.15171-15176, ISSN 0272-8842). DOI: https://doi.org/10.1016/j.ceramint.2016.06.080.

Amiri, Y., Hassaninasab, S., Chehri, K., Zahedi, M. (2022). Investigating the effect of adding Bacillus bacteria and nano-clay on cement mortar properties. Case Studies in Construction Materials (Vol. 17, e01167, ISSN 2214-5095). DOI: https://doi.org/10.1016/j.cscm.2022.e01167.

Assaedi, H., Shaikh, F.U.A., Low, I.M. (2016). Effect of nano-clay on mechanical and thermal properties of geopolymer, Journal of Asian Ceramic Societies (Vol. 4, Issue-1, pp.19-28, ISSN 2187-0764). DOI: https://doi.org/10.1016/j.jascer.2015.10.004.

Abdalla, J.A., Thomas, B.S., Hawileh, R.A., Yang, J., Jindal, B.B., Ariyachandra, E. (2022). Influence of nano-TiO2, nano-Fe2O3, nanoclay, and nano-CaCO3 on the properties of cement/geopolymer concrete. Cleaner Materials (Vol. 4, 100061, ISSN 2772-3976).

DOI: https://doi.org/10.1016/j.clema.2022.100061.

Ravitheja, A., Kumar, N.L.N.K. (2019). A study on the effect of nano clay and GGBS on the strength properties of fly ash-based geopolymers, Part 2. Materials Today: Proceedings, (Vol. 19, pp.273-276, ISSN 2214-7853). DOI: https://doi.org/10.1016/j.matpr.2019.06.761.

Assaedi, H., Shaikh, F.U.A., Low, I.M. (2017). Effect of Nanoclay on the Durability and Mechanical Properties of Flax Fabric-Reinforced Geopolymer Composites. Journal of Asian Ceramic Societies (Vol. 5, Issue-1, pp.62-70, ISSN 2187-0764).

DOI: https://doi.org/10.1016/j.jascer.2017.01.003.

Zeyad, A.M., Magbool, H.M., Tayeh, B.A., de Azevedo, A.R.G., Abutaleb, A., Hussain, Q. (2022). Production of geopolymer concrete by utilizing volcanic pumice dust. Case Studies in Construction Materials (Vol. 16, e00802, ISSN 2214-5095). DOI: https://doi.org/10.1016/j.cscm.2021.e00802.

Mohseni, E., Kazemi, M.J., Koushkbaghi, M., Zehtab, B., Behforouz, B. (2019). Evaluation of mechanical and durability properties of fibre-reinforced lightweight geopolymer composites based on rice husk ash and nano-alumina. Construction and Building Materials (Vol. 209, pp.532-540, ISSN 0950-0618). DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.067.

Alomayri, T. (2019). Experimental study of the microstructural and mechanical properties of geopolymer paste with nano material (Al2O3). Journal of Building Engineering (Vol. 25, 100788, ISSN 2352-7102). DOI: https://doi.org/10.1016/j.jobe.2019.100788.

De Souza, F.B., Shamsaei, E., Sagoe-Crentsil, K., Duan, W. (2022). Proposed mechanism for the enhanced microstructure of graphene oxide–Portland cement composites, Journal of Building Engineering (Vol. 54, 104604, ISSN 2352-7102).

DOI: https://doi.org/10.1016/j.jobe.2022.104604.

Sheng, K., Li, D., Yuan, X. (2021). Methyl orange-assisted dispersion of graphene oxide in the alkaline environment for improving mechanical properties and fluidity of ordinary Portland cement composites—Journal of Building Engineering (Vol. 43, 103166, ISSN 2352-7102).

DOI: https://doi.org/10.1016/j.jobe.2021.103166.

Smirnova, O.M., Menendez Pidal, I., Alekseev, A.V., Petrov, D.N., Popov, M.G. (2022). Strain Hardening of Polypropylene Microfiber Reinforced Composite Based on Alkali-Activated Slag Matrix. Materials (Vol. 15, 1607). DOI: https://doi.org/10.3390/ma15041607.

Yan, S., He, P., Jia, D., Yang, Z., Duan, X., Wang, S., Zhou, Y. (2016). Effect of reduced graphene oxide content on the microstructure and mechanical properties of graphene–geopolymer nanocomposites Part A. Ceramics International, (Vol. 42, Issue-1, pp.752-758, ISSN 0272-8842). DOI: https://doi.org/10.1016/j.ceramint.2015.08.176.

Zhang, G., Lu, J. (2018). Experimental research on the mechanical properties of graphene geopolymer. AIP Advances (Vol. 8, Issue-7, pp.1-9, 065209). DOI: https://doi.org/10.1063/1.5020547.

Sunil, S.S., Kolli, R. (2022). Experimental investigation on the mechanical properties of fly ash-GGBFS-based GO-geopolymer concrete using mineral sand (Quartz-Feldspar) as fine aggregate. Materials Today: Proceedings (Vol. 60, Issue-1, pp.40-45, ISSN 2214-7853). DOI: https://doi.org/10.1016/j.matpr.2021.11.325.

Most read articles by the same author(s)

<< < 3 4 5 6 7 8 9 10 > >>