Investigating Subsurface Thermal Regimes Using High-Resolution Aeromagnetic Data in the Upper Benue Trough, Northeastern Nigeria

Main Article Content

Dr Musa Hayatudeen
Dr Mohammed Ali Garba
Dr Kamureyina Ezekiel

Abstract

High-resolution Aeromagnetic data were processed using Oasis Montaj software to produce residual magnetic anomaly maps of the study area, from which the Curie point depth was determined for heat flow and geothermal gradient assessment. The Curie depth values ranged from 16.6 km to 23.05 km, with an average of 17.55 km. Using a thermal conductivity of 2.5 Wm⁻¹°C⁻¹ and a Curie temperature of 580°C, calculated geothermal gradients ranged from 25.16°C/km to 35.04°C/km, and heat flow values varied between 62.9 and 87.6 mWm⁻². These thermal parameters indicate mostly tectonically stable conditions with localized geothermal anomalies, particularly around Dukku, Wade, Karim Lamido, and Jabieb, coinciding with known geothermal springs and attributed to crustal thinning and magmatic intrusions. The spectral analysis approach [1] Based on magnetic anomaly wavelength decomposition,] provides a reliable framework for estimating subsurface thermal structures. The study supports the potential for geothermal energy exploration in the area. It highlights the utility of combining magnetic and thermal modelling for geothermal resource assessment, especially where direct temperature measurements are sparse. Further investigations, including geochemical and drilling studies, are recommended to validate geothermal prospectivity and support sustainable energy development in the region.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

[1]
Dr Musa Hayatudeen, Dr Mohammed Ali Garba, and Dr Kamureyina Ezekiel , Trans., “Investigating Subsurface Thermal Regimes Using High-Resolution Aeromagnetic Data in the Upper Benue Trough, Northeastern Nigeria”, IJIES, vol. 12, no. 10, pp. 29–36, Oct. 2025, doi: 10.35940/ijies.K1134.12101025.
Share |

References

M. Akiishi, P. I. Uloko, T. T. Iortim, G. O. Ankeli and A. Ichagba. (2025): Spectral Analysis Determination of Depth to Basement in Parts of Nigerian Sector of Chad Basin using Aeromagnetic Data. International Journal of Research and Innovation in Social Sciences. DOI: https://dx.doi.org/10.47772/IJRISS.2025.908000363

Musa Hayatudeen and Bello Rasak (2022). Structural relationship between Adamawa massif and Hawal basement from high-resolution aeromagnetic data, satellite imagery, and field work over the upper Benue trough, Northeastern Nigeria. Journal of Environmental Geology Vol . 6 No.3. pp. 1-6. DOI: http://doi.org/10.37532/PULAFSJ

Simon, K., Kamureyina, E., and Vitalis, V. (2025). Interpretation of High-Resolution Aeromagnetic Data to Determine an Alternative Source for Power Generation in Biu Plateau and Environs, North-Eastern Nigeria. Open Journal of Geology, 15, 220-231. https://doi.org/10.4236/ojg.2025.154010

Solomon Nehemiah Yusuf, Lucky Osaro Imagbe, Ovye Musah Yohanna, Yusuf Ibrahim, and Asabe Yahaya Kuku. (2022). Imaging magmatic intrusions using derivatives of high-resolution aeromagnetic data over the Nigerian sector of the Chad Basin. Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative. Pp. 1-12. https://doi.org/10.1016/j.sciaf.2022.e01211.

Udochukwu, B. C., Akiishi, M., & Tyovenda, A. A. (2019). Estimation of geothermal gradient and Heat Flow for Determination of Geothermal Energy Sources in Monguno Area of Northeastern Nigeria. Journal of Geography, Environment and Earth Science International, 20(1), 1-8.

R. Bello, H. Musa, H. A. Kuforiji and I. T.Obidah. (2022); Structural Analysis of High-Resolution Aeromagnetic Data. A Case Study of Akko and Environs, Gongola Basin upper Benue Trough Northeastern Nigeria: Implication for Mineralisation and Groundwater Potentials. Journal of Geography, Environment and Earth Science International 26(1): 50-57, 2022; Article no. JGEESI.77654 ISSN: 2454-7352. DOI: http://doi.org/10.9734/JGEESI/2022/v26i130332

Folarin Kolawole and Jonathan C. Evenick (2023). Global distribution of geothermal gradients in sedimentary basins. Geosciences frontiers. Volume 14, Issue 6. Pp. 1-18. https://doi.org/10.1016/j.gsf.2023.101685

Nwankwo, L. I.; Hayatudeen, M. and Ohakwere-Eze, M. C. (2022). Assessing the Geothermal Energy Resource Potential of Gombe State in North-Eastern Nigeria from Aeromagnetic Survey. Jewel Journal of Scientific Research (JJSR) 7(1): 109–117.

Antonio Jorge de Lima Gomes and Valiya Mannathal Hamza (2025). Geothermal gradient and heat flow in the state of Rio de Janeiro. Brazilian Journal of Geophysics 23(4). Pp. 326-347 DOI: http://doi.org/10.1590/S0102-261X2005000400001

Adetona, A. A., Rafiu, A. A., Aliyu, B. Sh., John, M. K., & Kwaghhua, I. F. (2024). Estimating the Heat Flow, Geothermal Gradient and Radiogenic Heat within the Young Granites of Jos Plateau, North Central Nigeria. Journal of the Earth and Space Physics, 49(4), 69- 81. DOI: http//doi.org/10.22059/jesphys.2024.361557.1007538

Nnorom S. Lotanna, Eze Stanley, Saleh A. Saleh and John. J. Osazee (2020). Estimation of Geothermal Gradient, Geothermal Heat Flux and Thermal Conductivity of Rocks in Western Niger Delta Using Well Log Data. Journal of Energy Technologies and Policy. Vol.10, No.2. Pp. 1-15. DOI: http://doi.org/10.7176/JETP/10-2-04

Florian Neumann, Ben Norden, Elif Balkan-Pazvantoğlu, Samah Elbarbary, Alexey G. Petrunin, Kirsten Elger, Samuel Jennings, Simone Frenzel and Sven Fuchs (2025). The 2024 Release of the Global Heat Flow Database (GHFDB): Quality Assessment, Metadata Standards, and a Century of Geothermal Data. Earth system science data. Pp. 1-48. https://doi.org/10.5194/essd-2025-341