Bridging 3D-Printed and Cast Concrete: A Review of Mechanical Bond Behavior, Composite Action, and Sustainable Protective Structures

Main Article Content

Girmay Mengesha Azanaw

Abstract

New possibilities in digital construction are made possible by the combination of 3D printed concrete with traditional cast concrete, which allows for the quick fabrication of hybrid structures that blend structural efficiency, customization, and geometric intricacy. The mechanical bond behavior and composite action at the interface between cast concrete and 3D printed concrete, however, continue to be significant obstacles influencing the overall performance, longevity, and structural integrity of such hybrid systems. In order to clarify the interfacial mechanisms driving load transmission, failure modes, and bond strength development, this thorough study examines current developments in experimental techniques and numerical modeling approaches. Additionally, the research examines how printing parameters, interface preparation methods, and reinforcing tactics can improve composite activity. At the same time, the assessment assesses the application and design of 3D printed concrete for protective constructions, such as—including blast-resistant barriers, disaster shelters, and impact-absorbing walls—highlighting their performance under extreme loading conditions. Through a comparative analysis of existing findings, I identify research gaps, standardization needs, and future directions for optimizing mechanical synergy in hybrid 3D printing systems. Visual summaries including comparative tables, bond stress–slip relationship charts, and schematic illustrations of interface mechanisms are provided to facilitate deeper understanding. This review contributes to the foundation for the next generation of high-performance, sustainable, and rapidly deployable concrete structures.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

[1]
Girmay Mengesha Azanaw , Tran., “Bridging 3D-Printed and Cast Concrete: A Review of Mechanical Bond Behavior, Composite Action, and Sustainable Protective Structures”, IJIES, vol. 12, no. 5, pp. 14–24, May 2025, doi: 10.35940/ijies.E1103.12050525.
Share |

References

Bo Nan, Youxin Qiao. (2025). Advancing Structural Reinforcement in 3D-Printed Concrete: Current Methods, Challenges, and Innovations. Materials 2025, 18(2), 252; DOI: https://doi.org/10.3390/ma18020252

Chen,J. (2025). Review of 3D Printed Concrete: Mix Design. Applied and Computational Engineering, 127, 24-29. DOI: https://doi.org/10.54254/2755-2721/2025.20060

Li Wang , Yu Yang , Yuanyuan Hu , Guowei Ma. (2024). Interfacial Properties of Three-Dimensional-Printed Permanent Formwork with Cast-in-Place Concrete. 3D Print Addit Manuf . 2024 Feb 15; 11(1):60–67. DOI: http://doi.org/10.1089/3dp.2021.0213

Zareiyan, B., & Khoshnevis, B. (2017). Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Automation in Construction, 83, 212–221. DOI: https://doi.org/10.1016/j.autcon.2017.08.019

Tay, D. Y. W., Ting, A. G. H., Panda, B., He, L., & Tan, M. J. (2019). Bond strength of 3D printed concrete. In Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), 25–30. DOI: https://doi.org/10.25341/D4T59C

Panda, B., Noor Mohamed, N. A., Tay, Y. W. D., & Tan, M. J. (2018). Bond strength in 3D printed geopolymer mortar. In T. Wangler & R. J. Flatt (Eds.), First RILEM International Conference on Concrete and Digital Fabrication – Digital Concrete 2018 (pp. 200–206). RILEM Bookseries, vol 19. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-99519-9_18

Wolfs, R. J. M., Bos, F. P., & Salet, T. A. M. (2020). Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research, 119,132–140. DOI: https://doi.org/10.1016/j.cemconres.2019.02.011

Tay, Y. W. D., Panda, B., Paul, S. C., Noor Mohamed, N. A., Tan, M. J., & Leong, K. F. (2021). 3D printing trends in building and construction industry: A review. Virtual and Physical Prototyping, 12(3),261–276.DOI:https://doi.org/10.1080/17452759.2017.1326724

He, L., Li, H., Chow, W. T., Zeng, B., & Qian, Y. (2022). Increasing the interlayer strength of 3D printed concrete with tooth-like interface: An experimental and theoretical investigation. Materials & Design, 223, 111117. DOI: https://doi.org/10.1016/j.matdes.2022.111117

Zhang, Y., Yang, L., Qian, R., Liu, G., Zhang, Y., & Du, H. (2022). Interlayer adhesion of 3D printed concrete: Influence of layer stacked vertically. Construction and Building Materials, 320, 126256. DOI: https://doi.org/10.1016/j.conbuildmat.2021.126256

Ahmed, M., Tay, Y. W. D., Panda, B., Tan, M. J., & Paul, S. C. (2023). Interfacial bonding performance of 3D-printed Ultra-High Performance Strain-Hardening Cementitious Composites (UHP-SHCC) and cast normal concrete. Journal of Building Engineering, 82, 108268. DOI: https://doi.org/10.1016/j.jobe.2023.108268

Bos, F. P., Wolfs, R. J. M., Ahmed, Z. Y., & Salet, T. A. M. (2016). Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Virtual and Physical Prototyping, 11(3), 209–225. DOI: https://doi.org/10.1080/17452759.2016.1209867

Zhang, Y., Yang, L., Qian, R., Liu, G., Zhang, Y., & Du, H. (2023). Interlayer adhesion of 3D printed concrete: Influence of layer stacked vertically. Construction and Building Materials, 399, 132424. DOI: https://doi.org/10.1016/j.conbuildmat.2023.132424

Hambach, M., et al. (2016). "Reinforcement of 3D printed concrete structures with micro and macro fibers." Materials, 9(7), 535. DOI: http://doi.org/10.3390/ma9070535

Wolfs, R. J. M., et al. (2019). "Structural capacity of 3D printed reinforced concrete beams." Engineering Structures, 198, 109342. DOI: http://doi.org/10.1016/j.engstruct.2019.109342

Marchment, T., et al. (2020). "Understanding the fracture behavior of additively manufactured concrete." Cement and Concrete Research, 137, 106211. DOI: http://doi.org/10.1016/j.cemconres.2020.106211

Wolfs, R. J. M., Bos, F. P., & Salet, T. A. M. (2019). Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research, 119, 132–140. DOI: https://doi.org/10.1016/j.cemconres.2019.02.011

Wang, L., Zhang, D., & Ma, G. (2021). Finite element modeling of mechanical behavior of 3D printed concrete considering interlayer interfaces. Construction and Building Materials, 270, 121430. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121430

Panda, B., Tay, Y. W. D., Paul, S. C., & Tan, M. J. (2023). Coupled hygro-mechanical modeling of early-age behavior of 3D printed concrete layers. Journal of Building Engineering, 72, 106659. DOI: https://doi.org/10.1016/j.jobe.2023.106659

Panda, B., Paul, S. C., Noor Mohamed, N. A., Tay, D. Y. W., & Tan, M. J. (2017). Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement, 113, 108–116. DOI: https://doi.org/10.1016/j.measurement.2017.08.051

Panda, B., et al. (2018). "Bond strength of 3D printed concrete interfaces: Experimental insights." Construction and Building Materials, 163, 318–331. DOI: http://doi.org/10.1016/j.conbuildmat.2017.12.136

Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G. F., & Thorpe, T. (2020). Mix design and fresh properties for high-performance printing concrete. Materials and Structures, 45(8), 1221–1232. DOI: https://doi.org/10.1617/s11527-012-9828-z

Roussel, N. (2018). Rheological requirements for printable concretes. Cement and Concrete Research, 112, 76–85. DOI: https://doi.org/10.1016/j.cemconres.2018.05.004

Perrot, A., Rangeard, D., & Pierre, A. (2015). Structural built-up of cement-based materials used for 3D-printing extrusion techniques.Materials and Structures, 49(4), 1213–1220. DOI: https://doi.org/10.1617/s11527-015-0571-0

Nguyen, T. T., Le, T. D., & Tran, V. T. (2022). Experimental and numerical study on the flexural behavior of 3D-printed composite beams with U-shaped ECC formwork. Engineering Structures, 263, 114383. https://structurae.net/en/literature/journal-article/experimental-and-numerical-study-on-the-flexural-behavior-of-3d-printed-composite-beams-with-u-shaped-ecc-formwork/references

Guo, Y., Wang, Y., & Zhang, Y. (2022). Interfacial bond in concrete-to-concrete composites: A review. Construction and Building Materials, 348, 128621. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128621

Alrubaye, M. M., Al-Mahaidi, R., & Al-Mahaidi, R. (2020). Experimental evaluation of bond strength performance between different concrete interfaces.Journal of Engineering Science and Technology, 15(6), 4370–4384.

https://jestec.taylors.edu.my/Vol%2015%20issue%206%20December%202020/15_6_57.pdf

Zhou, Z.-F., Pu, Z.-H., & Tang, J.-H. (2019). Application of bilinear cohesive zone model in damage and cracking analysis of concrete pavement. Journal of Traffic and Transportation Engineering, 19(1), 17–23. DOI: https://doi.org/10.19818/j.cnki.1671-1637.2019.01.003

Mu, F., & Vandenbossche, J. (2017). A superimposed cohesive zone model for investigating the fracture properties of concrete–asphalt interface debonding. Fatigue & Fracture of Engineering Materials & Structures, 40(4), 496–511. DOI:

https://doi.org/10.1111/ffe.12509

Zhang, W., Tang, Z., Yang, Y., & Wei, J. (2021). Assessment of FRP–Concrete Interfacial Debonding with Coupled Mixed-Mode Cohesive Zone Model. Journal of Composites for Construction, 25(2), 04021001. DOI:

https://doi.org/10.1061/(ASCE)CC.1943-5614.0001114

Mauludin, L. M., Oucif, C., & Rabczuk, T. (2020). The effects of mismatch fracture properties in encapsulation-based self-healing concrete using cohesive-zone model.

Frontiers of Structural and Civil Engineering, 14, 792–801. DOI:

https://doi.org/10.1007/s11709-020-0629-0

Paulay, T., & Priestley, M. J. N. (2022). Seismic Design of Reinforced Concrete and Masonry Buildings.John Wiley & Sons. DOI: https://doi.org/10.1002/9780470172841

Li, Y., Li, M., & Zhang, Y. (2021).Bonding performance of 3D printing concrete with self-locking interfaces exposed to compression-shear and compression-splitting stresses.

Journal of Building Engineering, 43, 102553. DOI: https://doi.org/10.1016/j.jobe.2021.102553

Patel, S. K., & Soni, D. K. (2020). A Complete Review on 3d Printing and Different Process Parameters on which it’s Performance Depends. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 6, pp. 364–368). DOI: https://doi.org/10.35940/ijeat.f1366.089620

Katiyar, P. C., Singh, B. P., Chhabra, M., & Parle, D. (2022). Effect of Build Orientation on Load Capacity of 3D Printed Parts. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 10, Issue 6, pp. 38–52). DOI: https://doi.org/10.35940/ijrte.f6821.0310622

Jeganmurugan, P., Gopalan, Dr. A., & Aishwarya, V. (2019). Reactive Powder Concrete with Composite Fibres. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 2, pp. 409–412). DOI: https://doi.org/10.35940/ijitee.b6400.129219