An Overview of Deep Learning Methods for Segmenting Thyroid Ultrasound Images
Main Article Content
Abstract
One of the various imaging modalities that is most frequently utilized in clinical practice is ultrasound (US). It is an emerging technology that has certain advantages along with disadvantages such as poor imaging quality and a lot of fluctuation. To aid in US diagnosis and/or to increase the objectivity and accuracy of such evaluation, effective automatic US image assessment techniques must be created from the perspective of image analysis. The most effective machine learning technology, notably in computer vision and general evaluation of images, has since been proven to belong to deep learning. Deep learning also has a huge potential for using US images for many automated activities. This paper quickly presents many well-known deep learning architectures before summarizing and delving into their applications in a number of distinct.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Vemulapalli L, SekharPC., Indian Journal of Applied Research, 9, p. 398 (2019).
Deng, L. and Yu, D., Foundations and trends in signal processing, 7(3–4), p.197 (2014). https://doi.org/10.1561/2000000039
Shen, D., Wu, G. and Suk, H.I., Annual review of biomedical engineering, 19, p.221 (2017). https://doi.org/10.1146/annurev-bioeng-071516-044442
Wang, G., IEEE, 4, p.8914 (2016). https://doi.org/10.1109/ACCESS.2016.2624938
Suzuki, K., Radiological physics and technology, 10(3), pp.257 (2017). https://doi.org/10.1007/s12194-017-0406-5
Vemulapalli L, SekharPC., Indian Journal of Applied Research, 9, p. 398 (2019).
Krizhevsky, A., Sutskever, I. and Hinton, G.E., Advances in neural information processing systems, 25, p.1097 (2012).
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P. and Garcia-Rodriguez, J., Applied Soft Computing, 70, p.41 (2018). https://doi.org/10.1016/j.asoc.2018.05.018
Ronneberger, O., Fischer, P. and Brox, T., International Conference on Medical image computing and computer-assisted intervention p. 234 (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Milletari, F., Navab, N. and Ahmadi, S.A., Fourth international conference on 3D vision (3DV), p.565 (2016).
N. I. of H.-C. Center. Chest X-ray NIHCC. [Online]. Available, https://nihcc.app.box.com/v/ChestXray-NIHCC [Accessed: 10-Nov-2021] (2017).
T. M. I. of T. (MIT)’s L. for C. Physiology. MIMIC-chest X-ray database (MIMIC-CXR) [Online]. Available, https://physionet.org/content/mimic-cxr/2.0.0/ [Accessed: 10-Nov-2021].
Reddy, U.M., Filly, R.A. and Copel, J.A., Obstetrics and gynecology, 112(1), p.145 (2008). https://doi.org/10.1097/01.AOG.0000318871.95090.d9
Haugen, B.R., Alexander, E.K., Bible, K.C., Doherty, G.M., Mandel, S.J., Nikiforov, Y.E., Pacini, F., Randolph, G.W., Sawka, A.M., Schlumberger, M. and Schuff, K.G., The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer, 26(1), pp.1(2016). https://doi.org/10.1089/thy.2015.0020
Gharib, H., Papini, E., Paschke, R., Duick, D.S., Valcavi, R., Hegedüs, L. and Vitti, P., Journal of endocrinological investigation, 33(5), p.287 (2010). https://doi.org/10.1007/BF03346587
Kwak, J.Y., Han, K.H., Yoon, J.H., Moon, H.J., Son, E.J., Park, S.H., Jung, H.K., Choi, J.S., Kim, B.M. and Kim, E.K., A step in establishing better stratification of cancer risk. Radiology, 260(3), p. 892 (2011). https://doi.org/10.1148/radiol.11110206
Park, J.Y., Lee, H.J., Jang, H.W., Kim, H.K., Yi, J.H., Lee, W. and Kim, S.H., A proposal for a thyroid imaging reporting and data system for ultrasound features of thyroid carcinoma. Thyroid, 19(11), p.1257 (2009). https://doi.org/10.1089/thy.2008.0021
Fotenos, A.F., Snyder, A.Z., Girton, L.E., Morris, J.C. and Buckner, R.L., Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology, 64(6), p.1032 (2005). https://doi.org/10.1212/01.WNL.0000154530.72969.11
Golan, R., Jacob, C. and Denzinger, J., International Joint Conference on Neural Networks (IJCNN), p. 243-(2016).
Milletari, F., Ahmadi, S.A., Kroll, C., Plate, A., Rozanski, V., Maiostre, J., Levin, J., Dietrich, O., Ertl-Wagner, B., Bötzel, K. and Navab, N., Computer Vision and Image Understanding, 164, p.92 (2017). https://doi.org/10.1016/j.cviu.2017.04.002
Perez, L. and Wang, J., The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621.
Shie, C.K., Chuang, C.H., Chou, C.N., Wu, M.H. and Chang, E.Y., Transfer representation learning for medical image analysis. 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), p.711 (2015). https://doi.org/10.1109/EMBC.2015.7318461
23 Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P. and Garcia-Rodriguez, J., Applied Soft Computing, 70, p. 41(2018). https://doi.org/10.1016/j.asoc.2018.05.018
Baratloo, A., Hosseini, M., Negida, A. and El Ashal, G., p.48 (2015).
Lalkhen, A.G. and McCluskey, A., Continuing education in anaesthesia critical care & pain, 8(6), p.221(2008). https://doi.org/10.1093/bjaceaccp/mkn041
Van Stralen, K.J., Stel, V.S., Reitsma, J.B., Dekker, F.W., Zoccali, C. and Jager, K.J., Kidney international, 75(12), p.1257 (2009). https://doi.org/10.1038/ki.2009.92
Csurka, G., Larlus, D., Perronnin, F. and Meylan, F., Bmvc, 27, p. 10 (2013).
Wong, H.B. and Lim, G.H., Proceedings of Singapore healthcare, 20(4), p.316 (2011). https://doi.org/10.1177/201010581102000411
Xu, Y., Wang, Y., Yuan, J., Cheng, Q., Wang, X. and Carson, P.L., Ultrasonics, 91, p.1 (2019). https://doi.org/10.1016/j.ultras.2018.07.006
Badea, M.S., Felea, I.I., Florea, L.M. and Vertan, C., arXiv preprint arXiv:1605.09612 (2016).
Kaur, J. and Jindal, A., International Journal of Computer Applications, 50(23), p.1 (2012). https://doi.org/10.5120/7959-0924
Poudel, P., Illanes, A., Sheet, D. and Friebe, M., Journal of healthcare engineering, (2018). https://doi.org/10.1155/2018/8087624
Shenoy, N.R. and Jatti, A., Indonesian Journal of Electrical Engineering and Computer Science, 21(3), p.1424 (2021). https://doi.org/10.11591/ijeecs.v21.i3.pp1424-1434
Garg, H. and Jindal, A., Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), pp.1 (2013).
Frannita, E.L., Nugroho, H.A., Nugroho, A. and Ardiyanto, I., 2nd International Conference on Imaging, Signal Processing and Communication (ICISPC), p. 79(2018).
Ying, X., Yu, Z., Yu, R., Li, X., Yu, M., Zhao, M. and Liu, K., International Conference on Neural Information Processing, p.373 (2018). https://doi.org/10.1007/978-3-030-04224-0_32
Kumbhakarna, V. M., Kulkarni, S. B., & Dhawale, A. D. (2020). NLP Algorithms Endowed f or Automatic Extraction of Information from Unstructured Free Text Reports of Radiology Monarchy. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 12, pp. 338–343). https://doi.org/10.35940/ijitee.l8009.1091220
Akila, Mrs. P. G., Batri, K., Sasi, G., & Ambika, R. (2019). Denoising of MRI Brain Images using Adaptive Clahe Filtering Method. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 1s, pp. 91–95). https://doi.org/10.35940/ijeat.a1018.1091s19
Mounir, M., Redouane, E. B., Reda, M. M., Saad, E. M., & Abderaouf, E. H. (2019). Assessment of the Radiation Dose during 16 Slices CT Examinations. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 4, pp. 4652–4657). https://doi.org/10.35940/ijrte.d8388.118419